--- library_name: transformers license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: python-code-model results: [] --- # python-code-model This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.3936 | 0.4827 | 500 | 3.6571 | | 3.1064 | 0.9654 | 1000 | 2.7322 | | 2.4375 | 1.4479 | 1500 | 2.3305 | | 2.1386 | 1.9306 | 2000 | 2.0923 | | 1.8331 | 2.4132 | 2500 | 1.9542 | | 1.7149 | 2.8959 | 3000 | 1.8969 | ### Framework versions - Transformers 4.57.3 - Pytorch 2.9.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.2