KJML commited on
Commit
f715494
·
verified ·
1 Parent(s): 094355a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -150
README.md CHANGED
@@ -1,199 +1,150 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
 
 
 
 
 
 
 
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
 
 
 
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
 
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
 
 
 
194
 
195
- [More Information Needed]
 
 
 
 
 
196
 
197
- ## Model Card Contact
 
 
 
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ pipeline_tag: text-generation
4
+ base_model: openai/gpt-oss-20b
5
+ license: apache-2.0
6
+ tags:
7
+ - text-generation
8
+ - causal-lm
9
+ - gpt_oss
10
+ - moe
11
+ - fp8
12
+ - conversational
13
+ - english
14
  ---
15
 
16
+ # Model Card for `KJML/gpt-oss-20b-FP8-Dynamic`
17
 
18
+ This repository provides an FP8-dynamic quantized variant of **OpenAI’s `gpt-oss-20b`** model.
19
+ It is intended for users who want the reasoning capabilities of gpt-oss-20b with a **smaller memory footprint and faster inference** on modern GPUs that support FP8 inference.
20
 
21
+ > ⚠️ This model is **not** trained or fine-tuned further; it is a **post-training quantization** of the original `openai/gpt-oss-20b` weights.
22
 
23
+ ---
24
 
25
  ## Model Details
26
 
27
  ### Model Description
28
 
29
+ - **Base model:** `openai/gpt-oss-20b`
30
+ - **Architecture:** Mixture-of-Experts (MoE) Transformer language model (≈21B total params, ≈3.6B active per token, inherited from base)
31
+ - **Quantization:** FP8 dynamic (weights + activations) for inference
32
+ - **Context length:** Same as base `gpt-oss-20b` (long-context, Harmony-format chat)
33
+ - **Language(s):** Primarily English; inherits multilingual capability from base model
34
+ - **License:** Apache 2.0 (inherits from base model)
35
+ - **Model type:** Causal language model for text / chat generation
36
+ - **Developer of this variant:** KJML
37
+ - **Finetuned from model:** `openai/gpt-oss-20b` (no additional training; quantization only)
38
 
39
+ The original `gpt-oss-20b` is an open-weight reasoning model from OpenAI, designed for agentic workflows, tool use, and configurable reasoning effort. This FP8-dynamic variant preserves those capabilities while targeting **more efficient deployment**.
 
 
 
 
 
 
40
 
41
+ ### Model Sources
42
 
43
+ - **Base model repository:** <https://huggingface.co/openai/gpt-oss-20b>
44
+ - **Upstream project / docs:** <https://github.com/openai/gpt-oss>
45
+ - **This quantized model:** <https://huggingface.co/KJML/gpt-oss-20b-FP8-Dynamic> (this repo)
46
 
47
+ ---
 
 
48
 
49
  ## Uses
50
 
 
 
51
  ### Direct Use
52
 
53
+ Typical direct-use scenarios (without additional fine-tuning):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
+ - General chat and assistant-style dialogue (English-first)
56
+ - Reasoning and analysis (step-by-step / chain-of-thought) for:
57
+ - Technical explanations
58
+ - Brainstorming and ideation
59
+ - Code reasoning and pseudo-code (light coding assistance)
60
+ - Agentic / tool-using setups:
61
+ - Function calling and structured outputs
62
+ - Retrieval-augmented generation (RAG) backends
63
+ - Local “AI PC” / workstation deployments where FP8 is supported
64
 
65
+ **Note:** The model is trained on OpenAI’s Harmony response format. For best results, use a chat template that applies the Harmony format (e.g. `tokenizer.apply_chat_template` in Transformers) when prompting.
66
 
67
+ ### Downstream Use
68
 
69
+ The FP8-dynamic variant can be used as a drop-in replacement for `openai/gpt-oss-20b` in:
70
 
71
+ - Custom backends with vLLM / TGI / custom inference servers
72
+ - Local desktop apps (LM Studio, Ollama-style setups, etc.) that support FP8
73
+ - RAG systems where latency and VRAM usage are important
74
+ - Multi-agent frameworks where many concurrent contexts are needed
75
 
76
+ If you fine-tune or adapt this model further, treat it as you would the base `gpt-oss-20b` model, but keep in mind that **quantization can slightly change numeric behavior**, especially for very long generations.
77
 
78
+ ### Out-of-Scope Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
+ The model (and this quantized variant) is **not recommended** for:
81
 
82
+ - High-stakes decision making without human review, e.g.:
83
+ - Medical, legal, or financial advice
84
+ - Safety-critical environments (autonomous driving, industrial control, etc.)
85
+ - Generating content that violates laws or platform policies
86
+ - Acting as the sole decision-maker in any context where errors could cause **harm to people or property**
87
 
88
+ Users should always keep a human in the loop for sensitive or impactful applications.
89
 
90
+ ---
91
 
92
+ ## Bias, Risks, and Limitations
93
 
94
+ This model inherits all **biases, risks, and limitations** of the base `gpt-oss-20b` model. As a large language model trained on internet-scale data, it may:
95
 
96
+ - Produce **biased or stereotypical content**, including along axes such as gender, race, nationality, or religion.
97
+ - Hallucinate facts, references, or citations.
98
+ - Overstate its own certainty.
99
+ - Generate unsafe or undesirable content if prompted adversarially or without proper safety layers.
100
 
101
+ The FP8-dynamic quantization may also:
102
 
103
+ - Introduce small degradations in quality vs. BF16 / MXFP4 versions, particularly for:
104
+ - Very long generations
105
+ - Edge cases that are numerically sensitive
106
+ - Behave slightly differently from the base model, even with identical prompts.
107
 
108
+ ### Recommendations
109
 
110
+ - **Do not** rely on this model as a single source of truth.
111
+ - Add **safety filters** and/or a moderation layer around generations.
112
+ - Use **human review** for any high-impact or user-facing deployment.
113
+ - Evaluate the FP8-dynamic variant on your own tasks and data before using in production.
114
 
115
+ ---
116
 
117
+ ## How to Get Started with the Model
118
 
119
+ Basic usage with 🤗 Transformers:
120
 
121
+ ```python
122
+ from transformers import AutoTokenizer, AutoModelForCausalLM
123
 
124
+ model_id = "KJML/gpt-oss-20b-FP8-Dynamic"
125
 
126
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
127
+ model = AutoModelForCausalLM.from_pretrained(
128
+ model_id,
129
+ torch_dtype="auto", # Will use FP8 where supported
130
+ device_map="auto",
131
+ )
132
 
133
+ messages = [
134
+ {"role": "system", "content": "You are a helpful AI assistant."},
135
+ {"role": "user", "content": "Explain what FP8 dynamic quantization is in simple terms."},
136
+ ]
137
 
138
+ inputs = tokenizer.apply_chat_template(
139
+ messages,
140
+ tokenize=True,
141
+ add_generation_prompt=True,
142
+ return_tensors="pt",
143
+ ).to(model.device)
144
 
145
+ outputs = model.generate(
146
+ inputs,
147
+ max_new_tokens=256,
148
+ )
149
 
150
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))