--- library_name: transformers base_model: leamac51 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy - f1 model-index: - name: bsclass-finetuned-gtzan-1st-aprox-less-LR results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.915 - name: F1 type: f1 value: 0.9147312393158322 --- # bsclass-finetuned-gtzan-1st-aprox-less-LR This model is a fine-tuned version of [leamac51](https://huggingface.co/leamac51) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5240 - Accuracy: 0.915 - F1: 0.9147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.0897 | 1.0 | 100 | 2.0161 | 0.685 | 0.6827 | | 1.6456 | 2.0 | 200 | 1.7330 | 0.66 | 0.6290 | | 1.4091 | 3.0 | 300 | 1.3255 | 0.78 | 0.7732 | | 1.1217 | 4.0 | 400 | 1.1425 | 0.82 | 0.8186 | | 1.0118 | 5.0 | 500 | 0.9657 | 0.85 | 0.8524 | | 0.7186 | 6.0 | 600 | 0.7777 | 0.86 | 0.8609 | | 0.4308 | 7.0 | 700 | 0.5975 | 0.905 | 0.9040 | | 0.451 | 8.0 | 800 | 0.5240 | 0.915 | 0.9147 | | 0.3558 | 9.0 | 900 | 0.5822 | 0.885 | 0.8853 | | 0.2556 | 10.0 | 1000 | 0.5207 | 0.905 | 0.9052 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0