| { | |
| "best_metric": 0.9044117647058824, | |
| "best_model_checkpoint": "./fp32_3e_5/models/mrpc-roberta-base/checkpoint-700", | |
| "epoch": 6.086956521739131, | |
| "global_step": 700, | |
| "is_hyper_param_search": false, | |
| "is_local_process_zero": true, | |
| "is_world_process_zero": true, | |
| "log_history": [ | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2.9139685476410734e-05, | |
| "loss": 0.5703, | |
| "step": 100 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "eval_accuracy": 0.8578431372549019, | |
| "eval_combined_score": 0.8771358543417367, | |
| "eval_f1": 0.8964285714285715, | |
| "eval_loss": 0.34303969144821167, | |
| "eval_runtime": 6.6616, | |
| "eval_samples_per_second": 61.247, | |
| "eval_steps_per_second": 1.951, | |
| "step": 100 | |
| }, | |
| { | |
| "epoch": 1.74, | |
| "learning_rate": 2.6364477335800183e-05, | |
| "loss": 0.3621, | |
| "step": 200 | |
| }, | |
| { | |
| "epoch": 1.74, | |
| "eval_accuracy": 0.8823529411764706, | |
| "eval_combined_score": 0.8990712074303405, | |
| "eval_f1": 0.9157894736842105, | |
| "eval_loss": 0.32112017273902893, | |
| "eval_runtime": 2.2189, | |
| "eval_samples_per_second": 183.876, | |
| "eval_steps_per_second": 5.859, | |
| "step": 200 | |
| }, | |
| { | |
| "epoch": 2.61, | |
| "learning_rate": 2.358926919518964e-05, | |
| "loss": 0.2587, | |
| "step": 300 | |
| }, | |
| { | |
| "epoch": 2.61, | |
| "eval_accuracy": 0.8529411764705882, | |
| "eval_combined_score": 0.8756231306081754, | |
| "eval_f1": 0.8983050847457628, | |
| "eval_loss": 0.42085549235343933, | |
| "eval_runtime": 2.3421, | |
| "eval_samples_per_second": 174.202, | |
| "eval_steps_per_second": 5.551, | |
| "step": 300 | |
| }, | |
| { | |
| "epoch": 3.48, | |
| "learning_rate": 2.0814061054579094e-05, | |
| "loss": 0.1777, | |
| "step": 400 | |
| }, | |
| { | |
| "epoch": 3.48, | |
| "eval_accuracy": 0.8970588235294118, | |
| "eval_combined_score": 0.9108950031625553, | |
| "eval_f1": 0.9247311827956989, | |
| "eval_loss": 0.35459786653518677, | |
| "eval_runtime": 2.2787, | |
| "eval_samples_per_second": 179.046, | |
| "eval_steps_per_second": 5.705, | |
| "step": 400 | |
| }, | |
| { | |
| "epoch": 4.35, | |
| "learning_rate": 1.8038852913968547e-05, | |
| "loss": 0.1116, | |
| "step": 500 | |
| }, | |
| { | |
| "epoch": 4.35, | |
| "eval_accuracy": 0.8872549019607843, | |
| "eval_combined_score": 0.9032765737874097, | |
| "eval_f1": 0.9192982456140351, | |
| "eval_loss": 0.5677690505981445, | |
| "eval_runtime": 2.0042, | |
| "eval_samples_per_second": 203.57, | |
| "eval_steps_per_second": 6.486, | |
| "step": 500 | |
| }, | |
| { | |
| "epoch": 5.22, | |
| "learning_rate": 1.5263644773358002e-05, | |
| "loss": 0.0879, | |
| "step": 600 | |
| }, | |
| { | |
| "epoch": 5.22, | |
| "eval_accuracy": 0.8774509803921569, | |
| "eval_combined_score": 0.8954728950403692, | |
| "eval_f1": 0.9134948096885814, | |
| "eval_loss": 0.5992270112037659, | |
| "eval_runtime": 2.1523, | |
| "eval_samples_per_second": 189.563, | |
| "eval_steps_per_second": 6.04, | |
| "step": 600 | |
| }, | |
| { | |
| "epoch": 6.09, | |
| "learning_rate": 1.2488436632747456e-05, | |
| "loss": 0.0643, | |
| "step": 700 | |
| }, | |
| { | |
| "epoch": 6.09, | |
| "eval_accuracy": 0.9044117647058824, | |
| "eval_combined_score": 0.9176926080166581, | |
| "eval_f1": 0.9309734513274337, | |
| "eval_loss": 0.5864008069038391, | |
| "eval_runtime": 2.0987, | |
| "eval_samples_per_second": 194.406, | |
| "eval_steps_per_second": 6.194, | |
| "step": 700 | |
| } | |
| ], | |
| "max_steps": 1150, | |
| "num_train_epochs": 10, | |
| "total_flos": 1468685911019520.0, | |
| "trial_name": null, | |
| "trial_params": null | |
| } | |