Upload folder using huggingface_hub
Browse files- pipeline_mvdream.py +558 -0
pipeline_mvdream.py
ADDED
|
@@ -0,0 +1,558 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import inspect
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import Callable, List, Optional, Union
|
| 6 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor
|
| 7 |
+
from diffusers import AutoencoderKL, DiffusionPipeline
|
| 8 |
+
from diffusers.utils import (
|
| 9 |
+
deprecate,
|
| 10 |
+
is_accelerate_available,
|
| 11 |
+
is_accelerate_version,
|
| 12 |
+
logging,
|
| 13 |
+
)
|
| 14 |
+
from diffusers.configuration_utils import FrozenDict
|
| 15 |
+
from diffusers.schedulers import DDIMScheduler
|
| 16 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 17 |
+
|
| 18 |
+
from mv_unet import MultiViewUNetModel, get_camera
|
| 19 |
+
|
| 20 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class MVDreamPipeline(DiffusionPipeline):
|
| 24 |
+
|
| 25 |
+
_optional_components = ["feature_extractor", "image_encoder"]
|
| 26 |
+
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
vae: AutoencoderKL,
|
| 30 |
+
unet: MultiViewUNetModel,
|
| 31 |
+
tokenizer: CLIPTokenizer,
|
| 32 |
+
text_encoder: CLIPTextModel,
|
| 33 |
+
scheduler: DDIMScheduler,
|
| 34 |
+
# imagedream variant
|
| 35 |
+
feature_extractor: CLIPImageProcessor,
|
| 36 |
+
image_encoder: CLIPVisionModel,
|
| 37 |
+
requires_safety_checker: bool = False,
|
| 38 |
+
):
|
| 39 |
+
super().__init__()
|
| 40 |
+
|
| 41 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: # type: ignore
|
| 42 |
+
deprecation_message = (
|
| 43 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
| 44 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " # type: ignore
|
| 45 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
| 46 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
| 47 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
| 48 |
+
" file"
|
| 49 |
+
)
|
| 50 |
+
deprecate(
|
| 51 |
+
"steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False
|
| 52 |
+
)
|
| 53 |
+
new_config = dict(scheduler.config)
|
| 54 |
+
new_config["steps_offset"] = 1
|
| 55 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
| 56 |
+
|
| 57 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: # type: ignore
|
| 58 |
+
deprecation_message = (
|
| 59 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
| 60 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
| 61 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
| 62 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
| 63 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
| 64 |
+
)
|
| 65 |
+
deprecate(
|
| 66 |
+
"clip_sample not set", "1.0.0", deprecation_message, standard_warn=False
|
| 67 |
+
)
|
| 68 |
+
new_config = dict(scheduler.config)
|
| 69 |
+
new_config["clip_sample"] = False
|
| 70 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
| 71 |
+
|
| 72 |
+
self.register_modules(
|
| 73 |
+
vae=vae,
|
| 74 |
+
unet=unet,
|
| 75 |
+
scheduler=scheduler,
|
| 76 |
+
tokenizer=tokenizer,
|
| 77 |
+
text_encoder=text_encoder,
|
| 78 |
+
feature_extractor=feature_extractor,
|
| 79 |
+
image_encoder=image_encoder,
|
| 80 |
+
)
|
| 81 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 82 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
| 83 |
+
|
| 84 |
+
def enable_vae_slicing(self):
|
| 85 |
+
r"""
|
| 86 |
+
Enable sliced VAE decoding.
|
| 87 |
+
|
| 88 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
| 89 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
| 90 |
+
"""
|
| 91 |
+
self.vae.enable_slicing()
|
| 92 |
+
|
| 93 |
+
def disable_vae_slicing(self):
|
| 94 |
+
r"""
|
| 95 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
| 96 |
+
computing decoding in one step.
|
| 97 |
+
"""
|
| 98 |
+
self.vae.disable_slicing()
|
| 99 |
+
|
| 100 |
+
def enable_vae_tiling(self):
|
| 101 |
+
r"""
|
| 102 |
+
Enable tiled VAE decoding.
|
| 103 |
+
|
| 104 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
| 105 |
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
| 106 |
+
"""
|
| 107 |
+
self.vae.enable_tiling()
|
| 108 |
+
|
| 109 |
+
def disable_vae_tiling(self):
|
| 110 |
+
r"""
|
| 111 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
| 112 |
+
computing decoding in one step.
|
| 113 |
+
"""
|
| 114 |
+
self.vae.disable_tiling()
|
| 115 |
+
|
| 116 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
| 117 |
+
r"""
|
| 118 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
| 119 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
| 120 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
| 121 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
| 122 |
+
`enable_model_cpu_offload`, but performance is lower.
|
| 123 |
+
"""
|
| 124 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
| 125 |
+
from accelerate import cpu_offload
|
| 126 |
+
else:
|
| 127 |
+
raise ImportError(
|
| 128 |
+
"`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher"
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
device = torch.device(f"cuda:{gpu_id}")
|
| 132 |
+
|
| 133 |
+
if self.device.type != "cpu":
|
| 134 |
+
self.to("cpu", silence_dtype_warnings=True)
|
| 135 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
| 136 |
+
|
| 137 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
| 138 |
+
cpu_offload(cpu_offloaded_model, device)
|
| 139 |
+
|
| 140 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
| 141 |
+
r"""
|
| 142 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
| 143 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
| 144 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
| 145 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
| 146 |
+
"""
|
| 147 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
| 148 |
+
from accelerate import cpu_offload_with_hook
|
| 149 |
+
else:
|
| 150 |
+
raise ImportError(
|
| 151 |
+
"`enable_model_offload` requires `accelerate v0.17.0` or higher."
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
device = torch.device(f"cuda:{gpu_id}")
|
| 155 |
+
|
| 156 |
+
if self.device.type != "cpu":
|
| 157 |
+
self.to("cpu", silence_dtype_warnings=True)
|
| 158 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
| 159 |
+
|
| 160 |
+
hook = None
|
| 161 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
| 162 |
+
_, hook = cpu_offload_with_hook(
|
| 163 |
+
cpu_offloaded_model, device, prev_module_hook=hook
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# We'll offload the last model manually.
|
| 167 |
+
self.final_offload_hook = hook
|
| 168 |
+
|
| 169 |
+
@property
|
| 170 |
+
def _execution_device(self):
|
| 171 |
+
r"""
|
| 172 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
| 173 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
| 174 |
+
hooks.
|
| 175 |
+
"""
|
| 176 |
+
if not hasattr(self.unet, "_hf_hook"):
|
| 177 |
+
return self.device
|
| 178 |
+
for module in self.unet.modules():
|
| 179 |
+
if (
|
| 180 |
+
hasattr(module, "_hf_hook")
|
| 181 |
+
and hasattr(module._hf_hook, "execution_device")
|
| 182 |
+
and module._hf_hook.execution_device is not None
|
| 183 |
+
):
|
| 184 |
+
return torch.device(module._hf_hook.execution_device)
|
| 185 |
+
return self.device
|
| 186 |
+
|
| 187 |
+
def _encode_prompt(
|
| 188 |
+
self,
|
| 189 |
+
prompt,
|
| 190 |
+
device,
|
| 191 |
+
num_images_per_prompt,
|
| 192 |
+
do_classifier_free_guidance: bool,
|
| 193 |
+
negative_prompt=None,
|
| 194 |
+
):
|
| 195 |
+
r"""
|
| 196 |
+
Encodes the prompt into text encoder hidden states.
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 200 |
+
prompt to be encoded
|
| 201 |
+
device: (`torch.device`):
|
| 202 |
+
torch device
|
| 203 |
+
num_images_per_prompt (`int`):
|
| 204 |
+
number of images that should be generated per prompt
|
| 205 |
+
do_classifier_free_guidance (`bool`):
|
| 206 |
+
whether to use classifier free guidance or not
|
| 207 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 208 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 209 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
| 210 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
| 211 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 212 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 213 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 214 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 215 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 216 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 217 |
+
argument.
|
| 218 |
+
"""
|
| 219 |
+
if prompt is not None and isinstance(prompt, str):
|
| 220 |
+
batch_size = 1
|
| 221 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 222 |
+
batch_size = len(prompt)
|
| 223 |
+
else:
|
| 224 |
+
raise ValueError(
|
| 225 |
+
f"`prompt` should be either a string or a list of strings, but got {type(prompt)}."
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
text_inputs = self.tokenizer(
|
| 229 |
+
prompt,
|
| 230 |
+
padding="max_length",
|
| 231 |
+
max_length=self.tokenizer.model_max_length,
|
| 232 |
+
truncation=True,
|
| 233 |
+
return_tensors="pt",
|
| 234 |
+
)
|
| 235 |
+
text_input_ids = text_inputs.input_ids
|
| 236 |
+
untruncated_ids = self.tokenizer(
|
| 237 |
+
prompt, padding="longest", return_tensors="pt"
|
| 238 |
+
).input_ids
|
| 239 |
+
|
| 240 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 241 |
+
text_input_ids, untruncated_ids
|
| 242 |
+
):
|
| 243 |
+
removed_text = self.tokenizer.batch_decode(
|
| 244 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
| 245 |
+
)
|
| 246 |
+
logger.warning(
|
| 247 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 248 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
if (
|
| 252 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
| 253 |
+
and self.text_encoder.config.use_attention_mask
|
| 254 |
+
):
|
| 255 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
| 256 |
+
else:
|
| 257 |
+
attention_mask = None
|
| 258 |
+
|
| 259 |
+
prompt_embeds = self.text_encoder(
|
| 260 |
+
text_input_ids.to(device),
|
| 261 |
+
attention_mask=attention_mask,
|
| 262 |
+
)
|
| 263 |
+
prompt_embeds = prompt_embeds[0]
|
| 264 |
+
|
| 265 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
| 266 |
+
|
| 267 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 268 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 269 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 270 |
+
prompt_embeds = prompt_embeds.view(
|
| 271 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
# get unconditional embeddings for classifier free guidance
|
| 275 |
+
if do_classifier_free_guidance:
|
| 276 |
+
uncond_tokens: List[str]
|
| 277 |
+
if negative_prompt is None:
|
| 278 |
+
uncond_tokens = [""] * batch_size
|
| 279 |
+
elif type(prompt) is not type(negative_prompt):
|
| 280 |
+
raise TypeError(
|
| 281 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 282 |
+
f" {type(prompt)}."
|
| 283 |
+
)
|
| 284 |
+
elif isinstance(negative_prompt, str):
|
| 285 |
+
uncond_tokens = [negative_prompt]
|
| 286 |
+
elif batch_size != len(negative_prompt):
|
| 287 |
+
raise ValueError(
|
| 288 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 289 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 290 |
+
" the batch size of `prompt`."
|
| 291 |
+
)
|
| 292 |
+
else:
|
| 293 |
+
uncond_tokens = negative_prompt
|
| 294 |
+
|
| 295 |
+
max_length = prompt_embeds.shape[1]
|
| 296 |
+
uncond_input = self.tokenizer(
|
| 297 |
+
uncond_tokens,
|
| 298 |
+
padding="max_length",
|
| 299 |
+
max_length=max_length,
|
| 300 |
+
truncation=True,
|
| 301 |
+
return_tensors="pt",
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
if (
|
| 305 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
| 306 |
+
and self.text_encoder.config.use_attention_mask
|
| 307 |
+
):
|
| 308 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
| 309 |
+
else:
|
| 310 |
+
attention_mask = None
|
| 311 |
+
|
| 312 |
+
negative_prompt_embeds = self.text_encoder(
|
| 313 |
+
uncond_input.input_ids.to(device),
|
| 314 |
+
attention_mask=attention_mask,
|
| 315 |
+
)
|
| 316 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
| 317 |
+
|
| 318 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 319 |
+
seq_len = negative_prompt_embeds.shape[1]
|
| 320 |
+
|
| 321 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
| 322 |
+
dtype=self.text_encoder.dtype, device=device
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
| 326 |
+
1, num_images_per_prompt, 1
|
| 327 |
+
)
|
| 328 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
| 329 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 333 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 334 |
+
# to avoid doing two forward passes
|
| 335 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 336 |
+
|
| 337 |
+
return prompt_embeds
|
| 338 |
+
|
| 339 |
+
def decode_latents(self, latents):
|
| 340 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
| 341 |
+
image = self.vae.decode(latents).sample
|
| 342 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 343 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 344 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 345 |
+
return image
|
| 346 |
+
|
| 347 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 348 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 349 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 350 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 351 |
+
# and should be between [0, 1]
|
| 352 |
+
|
| 353 |
+
accepts_eta = "eta" in set(
|
| 354 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
| 355 |
+
)
|
| 356 |
+
extra_step_kwargs = {}
|
| 357 |
+
if accepts_eta:
|
| 358 |
+
extra_step_kwargs["eta"] = eta
|
| 359 |
+
|
| 360 |
+
# check if the scheduler accepts generator
|
| 361 |
+
accepts_generator = "generator" in set(
|
| 362 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
| 363 |
+
)
|
| 364 |
+
if accepts_generator:
|
| 365 |
+
extra_step_kwargs["generator"] = generator
|
| 366 |
+
return extra_step_kwargs
|
| 367 |
+
|
| 368 |
+
def prepare_latents(
|
| 369 |
+
self,
|
| 370 |
+
batch_size,
|
| 371 |
+
num_channels_latents,
|
| 372 |
+
height,
|
| 373 |
+
width,
|
| 374 |
+
dtype,
|
| 375 |
+
device,
|
| 376 |
+
generator,
|
| 377 |
+
latents=None,
|
| 378 |
+
):
|
| 379 |
+
shape = (
|
| 380 |
+
batch_size,
|
| 381 |
+
num_channels_latents,
|
| 382 |
+
height // self.vae_scale_factor,
|
| 383 |
+
width // self.vae_scale_factor,
|
| 384 |
+
)
|
| 385 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 386 |
+
raise ValueError(
|
| 387 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 388 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
if latents is None:
|
| 392 |
+
latents = randn_tensor(
|
| 393 |
+
shape, generator=generator, device=device, dtype=dtype
|
| 394 |
+
)
|
| 395 |
+
else:
|
| 396 |
+
latents = latents.to(device)
|
| 397 |
+
|
| 398 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 399 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 400 |
+
return latents
|
| 401 |
+
|
| 402 |
+
def encode_image(self, image, device, num_images_per_prompt):
|
| 403 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
| 404 |
+
|
| 405 |
+
if image.dtype == np.float32:
|
| 406 |
+
image = (image * 255).astype(np.uint8)
|
| 407 |
+
|
| 408 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
| 409 |
+
image = image.to(device=device, dtype=dtype)
|
| 410 |
+
|
| 411 |
+
image_embeds = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
| 412 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
| 413 |
+
|
| 414 |
+
return torch.zeros_like(image_embeds), image_embeds
|
| 415 |
+
|
| 416 |
+
def encode_image_latents(self, image, device, num_images_per_prompt):
|
| 417 |
+
|
| 418 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
| 419 |
+
|
| 420 |
+
image = torch.from_numpy(image).unsqueeze(0).permute(0, 3, 1, 2).to(device=device) # [1, 3, H, W]
|
| 421 |
+
image = 2 * image - 1
|
| 422 |
+
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
|
| 423 |
+
image = image.to(dtype=dtype)
|
| 424 |
+
|
| 425 |
+
posterior = self.vae.encode(image).latent_dist
|
| 426 |
+
latents = posterior.sample() * self.vae.config.scaling_factor # [B, C, H, W]
|
| 427 |
+
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
|
| 428 |
+
|
| 429 |
+
return torch.zeros_like(latents), latents
|
| 430 |
+
|
| 431 |
+
@torch.no_grad()
|
| 432 |
+
def __call__(
|
| 433 |
+
self,
|
| 434 |
+
prompt: str = "",
|
| 435 |
+
image: Optional[np.ndarray] = None,
|
| 436 |
+
height: int = 256,
|
| 437 |
+
width: int = 256,
|
| 438 |
+
num_inference_steps: int = 50,
|
| 439 |
+
guidance_scale: float = 7.0,
|
| 440 |
+
negative_prompt: str = "",
|
| 441 |
+
num_images_per_prompt: int = 1,
|
| 442 |
+
eta: float = 0.0,
|
| 443 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 444 |
+
output_type: Optional[str] = "numpy", # pil, numpy, latents
|
| 445 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 446 |
+
callback_steps: int = 1,
|
| 447 |
+
num_frames: int = 4,
|
| 448 |
+
device=torch.device("cuda:0"),
|
| 449 |
+
):
|
| 450 |
+
self.unet = self.unet.to(device=device)
|
| 451 |
+
self.vae = self.vae.to(device=device)
|
| 452 |
+
self.text_encoder = self.text_encoder.to(device=device)
|
| 453 |
+
|
| 454 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 455 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 456 |
+
# corresponds to doing no classifier free guidance.
|
| 457 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 458 |
+
|
| 459 |
+
# Prepare timesteps
|
| 460 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 461 |
+
timesteps = self.scheduler.timesteps
|
| 462 |
+
|
| 463 |
+
# imagedream variant
|
| 464 |
+
if image is not None:
|
| 465 |
+
assert isinstance(image, np.ndarray) and image.dtype == np.float32
|
| 466 |
+
self.image_encoder = self.image_encoder.to(device=device)
|
| 467 |
+
image_embeds_neg, image_embeds_pos = self.encode_image(image, device, num_images_per_prompt)
|
| 468 |
+
image_latents_neg, image_latents_pos = self.encode_image_latents(image, device, num_images_per_prompt)
|
| 469 |
+
|
| 470 |
+
_prompt_embeds = self._encode_prompt(
|
| 471 |
+
prompt=prompt,
|
| 472 |
+
device=device,
|
| 473 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 474 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 475 |
+
negative_prompt=negative_prompt,
|
| 476 |
+
) # type: ignore
|
| 477 |
+
prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2)
|
| 478 |
+
|
| 479 |
+
# Prepare latent variables
|
| 480 |
+
actual_num_frames = num_frames if image is None else num_frames + 1
|
| 481 |
+
latents: torch.Tensor = self.prepare_latents(
|
| 482 |
+
actual_num_frames * num_images_per_prompt,
|
| 483 |
+
4,
|
| 484 |
+
height,
|
| 485 |
+
width,
|
| 486 |
+
prompt_embeds_pos.dtype,
|
| 487 |
+
device,
|
| 488 |
+
generator,
|
| 489 |
+
None,
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
if image is not None:
|
| 493 |
+
camera = get_camera(num_frames, elevation=5, extra_view=True).to(dtype=latents.dtype, device=device)
|
| 494 |
+
else:
|
| 495 |
+
camera = get_camera(num_frames, elevation=15, extra_view=False).to(dtype=latents.dtype, device=device)
|
| 496 |
+
camera = camera.repeat_interleave(num_images_per_prompt, dim=0)
|
| 497 |
+
|
| 498 |
+
# Prepare extra step kwargs.
|
| 499 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 500 |
+
|
| 501 |
+
# Denoising loop
|
| 502 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 503 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 504 |
+
for i, t in enumerate(timesteps):
|
| 505 |
+
# expand the latents if we are doing classifier free guidance
|
| 506 |
+
multiplier = 2 if do_classifier_free_guidance else 1
|
| 507 |
+
latent_model_input = torch.cat([latents] * multiplier)
|
| 508 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 509 |
+
|
| 510 |
+
unet_inputs = {
|
| 511 |
+
'x': latent_model_input,
|
| 512 |
+
'timesteps': torch.tensor([t] * actual_num_frames * multiplier, dtype=latent_model_input.dtype, device=device),
|
| 513 |
+
'context': torch.cat([prompt_embeds_neg] * actual_num_frames + [prompt_embeds_pos] * actual_num_frames),
|
| 514 |
+
'num_frames': actual_num_frames,
|
| 515 |
+
'camera': torch.cat([camera] * multiplier),
|
| 516 |
+
}
|
| 517 |
+
|
| 518 |
+
if image is not None:
|
| 519 |
+
unet_inputs['ip'] = torch.cat([image_embeds_neg] * actual_num_frames + [image_embeds_pos] * actual_num_frames)
|
| 520 |
+
unet_inputs['ip_img'] = torch.cat([image_latents_neg] + [image_latents_pos]) # no repeat
|
| 521 |
+
|
| 522 |
+
# predict the noise residual
|
| 523 |
+
noise_pred = self.unet.forward(**unet_inputs)
|
| 524 |
+
|
| 525 |
+
# perform guidance
|
| 526 |
+
if do_classifier_free_guidance:
|
| 527 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 528 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
| 529 |
+
noise_pred_text - noise_pred_uncond
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 533 |
+
latents: torch.Tensor = self.scheduler.step(
|
| 534 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
| 535 |
+
)[0]
|
| 536 |
+
|
| 537 |
+
# call the callback, if provided
|
| 538 |
+
if i == len(timesteps) - 1 or (
|
| 539 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
| 540 |
+
):
|
| 541 |
+
progress_bar.update()
|
| 542 |
+
if callback is not None and i % callback_steps == 0:
|
| 543 |
+
callback(i, t, latents) # type: ignore
|
| 544 |
+
|
| 545 |
+
# Post-processing
|
| 546 |
+
if output_type == "latent":
|
| 547 |
+
image = latents
|
| 548 |
+
elif output_type == "pil":
|
| 549 |
+
image = self.decode_latents(latents)
|
| 550 |
+
image = self.numpy_to_pil(image)
|
| 551 |
+
else: # numpy
|
| 552 |
+
image = self.decode_latents(latents)
|
| 553 |
+
|
| 554 |
+
# Offload last model to CPU
|
| 555 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 556 |
+
self.final_offload_hook.offload()
|
| 557 |
+
|
| 558 |
+
return image
|