bod9 commited on
Commit
59d71fc
·
verified ·
1 Parent(s): a1afb96

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1536,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 1536, "out_features": 1024, "bias": true, "activation_function": "torch.nn.modules.linear.Identity"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79e2801747ecd978b3d38188615b8b06ef2e7695a41a76a7bece810e53e49b71
3
+ size 6295712
README.md ADDED
@@ -0,0 +1,618 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:180740
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: NovaSearch/stella_en_1.5B_v5
10
+ widget:
11
+ - source_sentence: $230 pool for outdoors not plastic
12
+ sentences:
13
+ - Wireless Outdoor Security Camera, WiFi Solar Rechargeable Battery Power IP Surveillance
14
+ Home Cameras, 1080P, Human Motion Detection, Night Vision, 2-Way Audio, 4dbi Antenna,
15
+ IP65 Waterproof, Cloud/SD
16
+ - Bestway SaluSpa Miami Inflatable Hot Tub, 4-Person AirJet Spa
17
+ - Mens Plush Robe - Fleece Robe, Mens Bathrobe - Fig -Small/Medium
18
+ - source_sentence: (hearing aid not amplifer)
19
+ sentences:
20
+ - Hearing Aid Cleaning Wire for Sound Tubes (2 Packs of 5)
21
+ - Hearing Aids, Enjoyee Hearing Aids for Seniors Rechargeable Hearing Amplifier
22
+ with Noise Cancelling for Adults Hearing Loss, Digital Ear Hearing Assist Devices
23
+ with Volume Control
24
+ - '24 Pieces Checking Erasable Pencils Red Pencils Pre-Sharpened #2 HB with Erasable
25
+ Tops for Checking Map Coloring Tests Grading'
26
+ - source_sentence: (can not use in the usa) european 220voltage hair tools
27
+ sentences:
28
+ - Umarex 2252109 Brodax Air Pistol .177 BB
29
+ - One-Step Hair Dryer & Volumizer Hot Air Brush, 3-in-1 Hair Dryer Brush Styler
30
+ for Straightening, Curling, Salon Negative Ion Ceramic Lightweight Blow Dryers
31
+ Straightener Curl Hair Brush
32
+ - Mini Portable Flat Iron Tourmaline Ceramic Dual Voltage Travel Iron for Worldwide
33
+ Use LED Indicator LOVANI Hair Straightener (Ceramic Mini)
34
+ - source_sentence: '''not my circus not my monkeys my monkeys flyshirt'''
35
+ sentences:
36
+ - Dresswel Women This is My Circus These are My Monkeys T-Shirt Mom Life Graphic
37
+ Tee Pocket Shirt Casual Tops
38
+ - 'Goyunwell Nylon Black Zippers by The Yard #5 10 Yards Nylon Black Long Zipper
39
+ Tape for Sewing 20Pcs Gunmetal Pulls Slider Zipper by The Yard Black Zipper Roll
40
+ for Craft Bag Purse Sewing Black Tape'
41
+ - Not My Circus Not My Monkeys Party T-Shirt
42
+ - source_sentence: '#1 small corded treadmill without remote control'
43
+ sentences:
44
+ - Goplus Under Desk Treadmill, with Touchable LED Display and Wireless Remote Control,
45
+ Built-in 3 Workout Modes and 12 Programs, Walking Jogging Machine, Superfit Electric
46
+ Treadmill for Home Office
47
+ - Pencil Guy Untipped white round pencil, no eraser 144 to a box
48
+ - SUNNY HEALTH & FITNESS ASUNA Space Saving Treadmill, Motorized with Speakers for
49
+ AUX Audio Connection - 8730G
50
+ pipeline_tag: sentence-similarity
51
+ library_name: sentence-transformers
52
+ metrics:
53
+ - cosine_accuracy@1
54
+ - cosine_accuracy@3
55
+ - cosine_accuracy@5
56
+ - cosine_accuracy@10
57
+ - cosine_precision@1
58
+ - cosine_precision@3
59
+ - cosine_precision@5
60
+ - cosine_precision@10
61
+ - cosine_recall@1
62
+ - cosine_recall@3
63
+ - cosine_recall@5
64
+ - cosine_recall@10
65
+ - cosine_ndcg@5
66
+ - cosine_ndcg@10
67
+ - cosine_mrr@1
68
+ - cosine_mrr@5
69
+ - cosine_mrr@10
70
+ - cosine_map@10
71
+ - cosine_map@100
72
+ model-index:
73
+ - name: SentenceTransformer based on NovaSearch/stella_en_1.5B_v5
74
+ results:
75
+ - task:
76
+ type: information-retrieval
77
+ name: Information Retrieval
78
+ dataset:
79
+ name: ir evaluation
80
+ type: ir_evaluation
81
+ metrics:
82
+ - type: cosine_accuracy@1
83
+ value: 0.5243984708792444
84
+ name: Cosine Accuracy@1
85
+ - type: cosine_accuracy@3
86
+ value: 0.7189116258151563
87
+ name: Cosine Accuracy@3
88
+ - type: cosine_accuracy@5
89
+ value: 0.782325163031257
90
+ name: Cosine Accuracy@5
91
+ - type: cosine_accuracy@10
92
+ value: 0.8452889588486621
93
+ name: Cosine Accuracy@10
94
+ - type: cosine_precision@1
95
+ value: 0.5243984708792444
96
+ name: Cosine Precision@1
97
+ - type: cosine_precision@3
98
+ value: 0.44764260550183643
99
+ name: Cosine Precision@3
100
+ - type: cosine_precision@5
101
+ value: 0.4002248706993479
102
+ name: Cosine Precision@5
103
+ - type: cosine_precision@10
104
+ value: 0.3198335956824826
105
+ name: Cosine Precision@10
106
+ - type: cosine_recall@1
107
+ value: 0.09367303103726933
108
+ name: Cosine Recall@1
109
+ - type: cosine_recall@3
110
+ value: 0.21358059074273028
111
+ name: Cosine Recall@3
112
+ - type: cosine_recall@5
113
+ value: 0.2980042886250134
114
+ name: Cosine Recall@5
115
+ - type: cosine_recall@10
116
+ value: 0.43181596262310956
117
+ name: Cosine Recall@10
118
+ - type: cosine_ndcg@5
119
+ value: 0.46762394517912087
120
+ name: Cosine Ndcg@5
121
+ - type: cosine_ndcg@10
122
+ value: 0.46811760590873697
123
+ name: Cosine Ndcg@10
124
+ - type: cosine_mrr@1
125
+ value: 0.5243984708792444
126
+ name: Cosine Mrr@1
127
+ - type: cosine_mrr@5
128
+ value: 0.625680233865528
129
+ name: Cosine Mrr@5
130
+ - type: cosine_mrr@10
131
+ value: 0.6341315350816145
132
+ name: Cosine Mrr@10
133
+ - type: cosine_map@10
134
+ value: 0.34926714503106293
135
+ name: Cosine Map@10
136
+ - type: cosine_map@100
137
+ value: 0.4065326888005573
138
+ name: Cosine Map@100
139
+ - task:
140
+ type: graded-ir
141
+ name: Graded IR
142
+ dataset:
143
+ name: gr evaluation
144
+ type: gr_evaluation
145
+ metrics:
146
+ - type: cosine_accuracy@1
147
+ value: 0.708792444344502
148
+ name: Cosine Accuracy@1
149
+ - type: cosine_accuracy@3
150
+ value: 0.9037553406791096
151
+ name: Cosine Accuracy@3
152
+ - type: cosine_accuracy@5
153
+ value: 0.9462559028558579
154
+ name: Cosine Accuracy@5
155
+ - type: cosine_accuracy@10
156
+ value: 0.9840341803463009
157
+ name: Cosine Accuracy@10
158
+ - type: cosine_precision@1
159
+ value: 0.708792444344502
160
+ name: Cosine Precision@1
161
+ - type: cosine_precision@3
162
+ value: 0.6468780451240538
163
+ name: Cosine Precision@3
164
+ - type: cosine_precision@5
165
+ value: 0.6044974139869574
166
+ name: Cosine Precision@5
167
+ - type: cosine_precision@10
168
+ value: 0.5283786822577018
169
+ name: Cosine Precision@10
170
+ - type: cosine_recall@1
171
+ value: 0.12721101888273206
172
+ name: Cosine Recall@1
173
+ - type: cosine_recall@3
174
+ value: 0.30930165915538804
175
+ name: Cosine Recall@3
176
+ - type: cosine_recall@5
177
+ value: 0.4489712213025254
178
+ name: Cosine Recall@5
179
+ - type: cosine_recall@10
180
+ value: 0.7098551817763595
181
+ name: Cosine Recall@10
182
+ - type: cosine_ndcg@5
183
+ value: 0.7127144186187505
184
+ name: Cosine Ndcg@5
185
+ - type: cosine_ndcg@10
186
+ value: 0.7543447490248549
187
+ name: Cosine Ndcg@10
188
+ - type: cosine_mrr@1
189
+ value: 0.708792444344502
190
+ name: Cosine Mrr@1
191
+ - type: cosine_mrr@5
192
+ value: 0.8065999550258622
193
+ name: Cosine Mrr@5
194
+ - type: cosine_mrr@10
195
+ value: 0.8118267710352285
196
+ name: Cosine Mrr@10
197
+ - type: cosine_map@10
198
+ value: 0.6051494969120079
199
+ name: Cosine Map@10
200
+ - type: cosine_map@100
201
+ value: 0.6944358205631005
202
+ name: Cosine Map@100
203
+ ---
204
+
205
+ # SentenceTransformer based on NovaSearch/stella_en_1.5B_v5
206
+
207
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [NovaSearch/stella_en_1.5B_v5](https://huggingface.co/NovaSearch/stella_en_1.5B_v5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
208
+
209
+ ## Model Details
210
+
211
+ ### Model Description
212
+ - **Model Type:** Sentence Transformer
213
+ - **Base model:** [NovaSearch/stella_en_1.5B_v5](https://huggingface.co/NovaSearch/stella_en_1.5B_v5) <!-- at revision b467445fc9c39af69fdb1bda9e18416df4d19f3c -->
214
+ - **Maximum Sequence Length:** 512 tokens
215
+ - **Output Dimensionality:** 1024 dimensions
216
+ - **Similarity Function:** Cosine Similarity
217
+ <!-- - **Training Dataset:** Unknown -->
218
+ <!-- - **Language:** Unknown -->
219
+ <!-- - **License:** Unknown -->
220
+
221
+ ### Model Sources
222
+
223
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
224
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
225
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
226
+
227
+ ### Full Model Architecture
228
+
229
+ ```
230
+ SentenceTransformer(
231
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen2Model
232
+ (1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
233
+ (2): Dense({'in_features': 1536, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
234
+ )
235
+ ```
236
+
237
+ ## Usage
238
+
239
+ ### Direct Usage (Sentence Transformers)
240
+
241
+ First install the Sentence Transformers library:
242
+
243
+ ```bash
244
+ pip install -U sentence-transformers
245
+ ```
246
+
247
+ Then you can load this model and run inference.
248
+ ```python
249
+ from sentence_transformers import SentenceTransformer
250
+
251
+ # Download from the 🤗 Hub
252
+ model = SentenceTransformer("bod9/fulldshardneg")
253
+ # Run inference
254
+ sentences = [
255
+ '#1 small corded treadmill without remote control',
256
+ 'SUNNY HEALTH & FITNESS ASUNA Space Saving Treadmill, Motorized with Speakers for AUX Audio Connection - 8730G',
257
+ 'Goplus Under Desk Treadmill, with Touchable LED Display and Wireless Remote Control, Built-in 3 Workout Modes and 12 Programs, Walking Jogging Machine, Superfit Electric Treadmill for Home Office',
258
+ ]
259
+ embeddings = model.encode(sentences)
260
+ print(embeddings.shape)
261
+ # [3, 1024]
262
+
263
+ # Get the similarity scores for the embeddings
264
+ similarities = model.similarity(embeddings, embeddings)
265
+ print(similarities.shape)
266
+ # [3, 3]
267
+ ```
268
+
269
+ <!--
270
+ ### Direct Usage (Transformers)
271
+
272
+ <details><summary>Click to see the direct usage in Transformers</summary>
273
+
274
+ </details>
275
+ -->
276
+
277
+ <!--
278
+ ### Downstream Usage (Sentence Transformers)
279
+
280
+ You can finetune this model on your own dataset.
281
+
282
+ <details><summary>Click to expand</summary>
283
+
284
+ </details>
285
+ -->
286
+
287
+ <!--
288
+ ### Out-of-Scope Use
289
+
290
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
291
+ -->
292
+
293
+ ## Evaluation
294
+
295
+ ### Metrics
296
+
297
+ #### Information Retrieval
298
+
299
+ * Dataset: `ir_evaluation`
300
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
301
+
302
+ | Metric | Value |
303
+ |:--------------------|:-----------|
304
+ | cosine_accuracy@1 | 0.5244 |
305
+ | cosine_accuracy@3 | 0.7189 |
306
+ | cosine_accuracy@5 | 0.7823 |
307
+ | cosine_accuracy@10 | 0.8453 |
308
+ | cosine_precision@1 | 0.5244 |
309
+ | cosine_precision@3 | 0.4476 |
310
+ | cosine_precision@5 | 0.4002 |
311
+ | cosine_precision@10 | 0.3198 |
312
+ | cosine_recall@1 | 0.0937 |
313
+ | cosine_recall@3 | 0.2136 |
314
+ | cosine_recall@5 | 0.298 |
315
+ | cosine_recall@10 | 0.4318 |
316
+ | cosine_ndcg@5 | 0.4676 |
317
+ | **cosine_ndcg@10** | **0.4681** |
318
+ | cosine_mrr@1 | 0.5244 |
319
+ | cosine_mrr@5 | 0.6257 |
320
+ | cosine_mrr@10 | 0.6341 |
321
+ | cosine_map@10 | 0.3493 |
322
+ | cosine_map@100 | 0.4065 |
323
+
324
+ #### Graded IR
325
+
326
+ * Dataset: `gr_evaluation`
327
+ * Evaluated with <code>GradedIREvaluator.GradedIREvaluator</code>
328
+
329
+ | Metric | Value |
330
+ |:--------------------|:-----------|
331
+ | cosine_accuracy@1 | 0.7088 |
332
+ | cosine_accuracy@3 | 0.9038 |
333
+ | cosine_accuracy@5 | 0.9463 |
334
+ | cosine_accuracy@10 | 0.984 |
335
+ | cosine_precision@1 | 0.7088 |
336
+ | cosine_precision@3 | 0.6469 |
337
+ | cosine_precision@5 | 0.6045 |
338
+ | cosine_precision@10 | 0.5284 |
339
+ | cosine_recall@1 | 0.1272 |
340
+ | cosine_recall@3 | 0.3093 |
341
+ | cosine_recall@5 | 0.449 |
342
+ | cosine_recall@10 | 0.7099 |
343
+ | cosine_ndcg@5 | 0.7127 |
344
+ | **cosine_ndcg@10** | **0.7543** |
345
+ | cosine_mrr@1 | 0.7088 |
346
+ | cosine_mrr@5 | 0.8066 |
347
+ | cosine_mrr@10 | 0.8118 |
348
+ | cosine_map@10 | 0.6051 |
349
+ | cosine_map@100 | 0.6944 |
350
+
351
+ <!--
352
+ ## Bias, Risks and Limitations
353
+
354
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
355
+ -->
356
+
357
+ <!--
358
+ ### Recommendations
359
+
360
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
361
+ -->
362
+
363
+ ## Training Details
364
+
365
+ ### Training Dataset
366
+
367
+ #### Unnamed Dataset
368
+
369
+ * Size: 180,740 training samples
370
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
371
+ * Approximate statistics based on the first 1000 samples:
372
+ | | anchor | positive | negative |
373
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
374
+ | type | string | string | string |
375
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.83 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 34.7 tokens</li><li>max: 107 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 34.66 tokens</li><li>max: 70 tokens</li></ul> |
376
+ * Samples:
377
+ | anchor | positive | negative |
378
+ |:------------------------------------------|:----------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
379
+ | <code>!awnmower tires without rims</code> | <code>MaxAuto 2-Pack 13x5.00-6 2PLY Turf Mower Tractor Tire with Yellow Rim, (3" Centered Hub, 3/4" Bushings )</code> | <code>Honda 44710-VG3-010 Front Wheels, (Set of 2)</code> |
380
+ | <code>!awnmower tires without rims</code> | <code>(Set of 2) 15x6.00-6 Husqvarna/Poulan Tire Wheel Assy .75" Bearing</code> | <code>Honda 44710-VG3-010 Front Wheels, (Set of 2)</code> |
381
+ | <code>!awnmower tires without rims</code> | <code>MaxAuto 2 Pcs 16x6.50-8 Lawn Mower Tire for Garden Tractors Ridings, 4PR, Tubeless</code> | <code>2PK 13x5.00-6 13x5.00x6 13x5x6 13x5-6 2PLY Turf Mower Tractor Tire with Gray Rim</code> |
382
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
383
+ ```json
384
+ {
385
+ "scale": 20.0,
386
+ "similarity_fct": "cos_sim"
387
+ }
388
+ ```
389
+
390
+ ### Training Hyperparameters
391
+ #### Non-Default Hyperparameters
392
+
393
+ - `eval_strategy`: epoch
394
+ - `per_device_train_batch_size`: 64
395
+ - `per_device_eval_batch_size`: 64
396
+ - `learning_rate`: 0.0001
397
+ - `weight_decay`: 0.01
398
+ - `num_train_epochs`: 5
399
+ - `warmup_ratio`: 0.1
400
+ - `bf16`: True
401
+ - `bf16_full_eval`: True
402
+ - `gradient_checkpointing`: True
403
+ - `batch_sampler`: no_duplicates
404
+
405
+ #### All Hyperparameters
406
+ <details><summary>Click to expand</summary>
407
+
408
+ - `overwrite_output_dir`: False
409
+ - `do_predict`: False
410
+ - `eval_strategy`: epoch
411
+ - `prediction_loss_only`: True
412
+ - `per_device_train_batch_size`: 64
413
+ - `per_device_eval_batch_size`: 64
414
+ - `per_gpu_train_batch_size`: None
415
+ - `per_gpu_eval_batch_size`: None
416
+ - `gradient_accumulation_steps`: 1
417
+ - `eval_accumulation_steps`: None
418
+ - `torch_empty_cache_steps`: None
419
+ - `learning_rate`: 0.0001
420
+ - `weight_decay`: 0.01
421
+ - `adam_beta1`: 0.9
422
+ - `adam_beta2`: 0.999
423
+ - `adam_epsilon`: 1e-08
424
+ - `max_grad_norm`: 1.0
425
+ - `num_train_epochs`: 5
426
+ - `max_steps`: -1
427
+ - `lr_scheduler_type`: linear
428
+ - `lr_scheduler_kwargs`: {}
429
+ - `warmup_ratio`: 0.1
430
+ - `warmup_steps`: 0
431
+ - `log_level`: passive
432
+ - `log_level_replica`: warning
433
+ - `log_on_each_node`: True
434
+ - `logging_nan_inf_filter`: True
435
+ - `save_safetensors`: True
436
+ - `save_on_each_node`: False
437
+ - `save_only_model`: False
438
+ - `restore_callback_states_from_checkpoint`: False
439
+ - `no_cuda`: False
440
+ - `use_cpu`: False
441
+ - `use_mps_device`: False
442
+ - `seed`: 42
443
+ - `data_seed`: None
444
+ - `jit_mode_eval`: False
445
+ - `use_ipex`: False
446
+ - `bf16`: True
447
+ - `fp16`: False
448
+ - `fp16_opt_level`: O1
449
+ - `half_precision_backend`: auto
450
+ - `bf16_full_eval`: True
451
+ - `fp16_full_eval`: False
452
+ - `tf32`: None
453
+ - `local_rank`: 0
454
+ - `ddp_backend`: None
455
+ - `tpu_num_cores`: None
456
+ - `tpu_metrics_debug`: False
457
+ - `debug`: []
458
+ - `dataloader_drop_last`: False
459
+ - `dataloader_num_workers`: 0
460
+ - `dataloader_prefetch_factor`: None
461
+ - `past_index`: -1
462
+ - `disable_tqdm`: False
463
+ - `remove_unused_columns`: True
464
+ - `label_names`: None
465
+ - `load_best_model_at_end`: False
466
+ - `ignore_data_skip`: False
467
+ - `fsdp`: []
468
+ - `fsdp_min_num_params`: 0
469
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
470
+ - `tp_size`: 0
471
+ - `fsdp_transformer_layer_cls_to_wrap`: None
472
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
473
+ - `deepspeed`: None
474
+ - `label_smoothing_factor`: 0.0
475
+ - `optim`: adamw_torch
476
+ - `optim_args`: None
477
+ - `adafactor`: False
478
+ - `group_by_length`: False
479
+ - `length_column_name`: length
480
+ - `ddp_find_unused_parameters`: None
481
+ - `ddp_bucket_cap_mb`: None
482
+ - `ddp_broadcast_buffers`: False
483
+ - `dataloader_pin_memory`: True
484
+ - `dataloader_persistent_workers`: False
485
+ - `skip_memory_metrics`: True
486
+ - `use_legacy_prediction_loop`: False
487
+ - `push_to_hub`: False
488
+ - `resume_from_checkpoint`: None
489
+ - `hub_model_id`: None
490
+ - `hub_strategy`: every_save
491
+ - `hub_private_repo`: None
492
+ - `hub_always_push`: False
493
+ - `gradient_checkpointing`: True
494
+ - `gradient_checkpointing_kwargs`: None
495
+ - `include_inputs_for_metrics`: False
496
+ - `include_for_metrics`: []
497
+ - `eval_do_concat_batches`: True
498
+ - `fp16_backend`: auto
499
+ - `push_to_hub_model_id`: None
500
+ - `push_to_hub_organization`: None
501
+ - `mp_parameters`:
502
+ - `auto_find_batch_size`: False
503
+ - `full_determinism`: False
504
+ - `torchdynamo`: None
505
+ - `ray_scope`: last
506
+ - `ddp_timeout`: 1800
507
+ - `torch_compile`: False
508
+ - `torch_compile_backend`: None
509
+ - `torch_compile_mode`: None
510
+ - `include_tokens_per_second`: False
511
+ - `include_num_input_tokens_seen`: False
512
+ - `neftune_noise_alpha`: None
513
+ - `optim_target_modules`: None
514
+ - `batch_eval_metrics`: False
515
+ - `eval_on_start`: False
516
+ - `use_liger_kernel`: False
517
+ - `eval_use_gather_object`: False
518
+ - `average_tokens_across_devices`: False
519
+ - `prompts`: None
520
+ - `batch_sampler`: no_duplicates
521
+ - `multi_dataset_batch_sampler`: proportional
522
+
523
+ </details>
524
+
525
+ ### Training Logs
526
+ | Epoch | Step | Training Loss | ir_evaluation_cosine_ndcg@10 | gr_evaluation_cosine_ndcg@10 |
527
+ |:------:|:-----:|:-------------:|:----------------------------:|:----------------------------:|
528
+ | 0.0004 | 1 | 8.8035 | - | - |
529
+ | 0.1770 | 500 | 3.9262 | - | - |
530
+ | 0.3540 | 1000 | 1.292 | - | - |
531
+ | 0.5310 | 1500 | 1.069 | - | - |
532
+ | 0.7080 | 2000 | 0.9684 | - | - |
533
+ | 0.8850 | 2500 | 0.9254 | - | - |
534
+ | 1.0 | 2825 | - | 0.4565 | 0.7494 |
535
+ | 1.0619 | 3000 | 0.8566 | - | - |
536
+ | 1.2389 | 3500 | 0.7997 | - | - |
537
+ | 1.4159 | 4000 | 0.7695 | - | - |
538
+ | 1.5929 | 4500 | 0.7489 | - | - |
539
+ | 1.7699 | 5000 | 0.7555 | - | - |
540
+ | 1.9469 | 5500 | 0.7279 | - | - |
541
+ | 2.0 | 5650 | - | 0.4591 | 0.7489 |
542
+ | 2.1239 | 6000 | 0.6673 | - | - |
543
+ | 2.3009 | 6500 | 0.6388 | - | - |
544
+ | 2.4779 | 7000 | 0.6286 | - | - |
545
+ | 2.6549 | 7500 | 0.6168 | - | - |
546
+ | 2.8319 | 8000 | 0.614 | - | - |
547
+ | 3.0 | 8475 | - | 0.4710 | 0.7542 |
548
+ | 3.0088 | 8500 | 0.602 | - | - |
549
+ | 3.1858 | 9000 | 0.5355 | - | - |
550
+ | 3.3628 | 9500 | 0.5322 | - | - |
551
+ | 3.5398 | 10000 | 0.5274 | - | - |
552
+ | 3.7168 | 10500 | 0.5434 | - | - |
553
+ | 3.8938 | 11000 | 0.5362 | - | - |
554
+ | 4.0 | 11300 | - | 0.4697 | 0.7550 |
555
+ | 4.0708 | 11500 | 0.5085 | - | - |
556
+ | 4.2478 | 12000 | 0.48 | - | - |
557
+ | 4.4248 | 12500 | 0.4871 | - | - |
558
+ | 4.6018 | 13000 | 0.4845 | - | - |
559
+ | 4.7788 | 13500 | 0.4879 | - | - |
560
+ | 4.9558 | 14000 | 0.484 | - | - |
561
+ | 5.0 | 14125 | - | 0.4681 | 0.7543 |
562
+
563
+
564
+ ### Framework Versions
565
+ - Python: 3.11.12
566
+ - Sentence Transformers: 4.1.0
567
+ - Transformers: 4.51.3
568
+ - PyTorch: 2.6.0+cu124
569
+ - Accelerate: 1.6.0
570
+ - Datasets: 3.6.0
571
+ - Tokenizers: 0.21.1
572
+
573
+ ## Citation
574
+
575
+ ### BibTeX
576
+
577
+ #### Sentence Transformers
578
+ ```bibtex
579
+ @inproceedings{reimers-2019-sentence-bert,
580
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
581
+ author = "Reimers, Nils and Gurevych, Iryna",
582
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
583
+ month = "11",
584
+ year = "2019",
585
+ publisher = "Association for Computational Linguistics",
586
+ url = "https://arxiv.org/abs/1908.10084",
587
+ }
588
+ ```
589
+
590
+ #### MultipleNegativesRankingLoss
591
+ ```bibtex
592
+ @misc{henderson2017efficient,
593
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
594
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
595
+ year={2017},
596
+ eprint={1705.00652},
597
+ archivePrefix={arXiv},
598
+ primaryClass={cs.CL}
599
+ }
600
+ ```
601
+
602
+ <!--
603
+ ## Glossary
604
+
605
+ *Clearly define terms in order to be accessible across audiences.*
606
+ -->
607
+
608
+ <!--
609
+ ## Model Card Authors
610
+
611
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
612
+ -->
613
+
614
+ <!--
615
+ ## Model Card Contact
616
+
617
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
618
+ -->
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "NovaSearch/stella_en_1.5B_v5",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": false,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "q_proj",
28
+ "v_proj"
29
+ ],
30
+ "task_type": "FEATURE_EXTRACTION",
31
+ "trainable_token_indices": null,
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:330f2950cfd8096da9bfa44bc7d77db80a15b6a6d8393604780f04955cb48f89
3
+ size 4372168
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {
8
+ "s2p_query": "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: ",
9
+ "s2s_query": "Instruct: Retrieve semantically similar text.\nQuery: "
10
+ },
11
+ "default_prompt_name": null,
12
+ "similarity_fn_name": "cosine"
13
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9f198d74f8167446195840e984e047a0336be641303805c5bb11e25d9ffbe90
3
+ size 11419303
tokenizer_config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_eos_token": true,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [
31
+ "<|im_start|>",
32
+ "<|im_end|>"
33
+ ],
34
+ "auto_map": {
35
+ "AutoTokenizer": [
36
+ "NovaSearch/stella_en_1.5B_v5--tokenization_qwen.Qwen2Tokenizer",
37
+ "NovaSearch/stella_en_1.5B_v5--tokenization_qwen.Qwen2TokenizerFast"
38
+ ]
39
+ },
40
+ "bos_token": null,
41
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
42
+ "clean_up_tokenization_spaces": false,
43
+ "eos_token": "<|endoftext|>",
44
+ "errors": "replace",
45
+ "extra_special_tokens": {},
46
+ "model_max_length": 512,
47
+ "pad_token": "<|endoftext|>",
48
+ "split_special_tokens": false,
49
+ "tokenizer_class": "Qwen2Tokenizer",
50
+ "unk_token": null
51
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff