File size: 10,167 Bytes
2cae6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# GitHub Trending Projects Dataset - Known Issues & Limitations

## Dataset Overview
- **Total Projects:** 423,098
- **Date Range:** 2013-08-21 to 2025-11-30
- **Unique Repositories:** 14,500
- **Success Rate:** 89.8% (17,127/19,064 URLs)

---

## 🚨 Major Issues

### 1. **Missing Star/Fork Count Data (2013-2019)**
**Severity:** High
**Affected:** 25,150 entries (5.9%)

**Problem:**
- 100% of 2013-2019 data lacks star/fork counts
- Only data from 2020+ has star/fork information
- This is due to HTML structure differences in older Wayback Machine snapshots

**Impact:**
- Cannot compare popularity metrics for pre-2020 projects
- Monthly rankings rely solely on trending score for 2013-2019
- Incomplete analysis for historical trends

**Affected Years:**
```
2013: 100% missing (150 entries)
2014: 100% missing (125 entries)
2015: 100% missing (325 entries)
2016: 100% missing (1,200 entries)
2017: 100% missing (1,550 entries)
2018: 100% missing (4,324 entries)
2019: 100% missing (17,475 entries)
2020+: 0% missing (397,949 entries)
```

**Recommendation:**
- Use weighted trending score only for historical analysis
- Clearly document this limitation when presenting data
- Consider scraping current star counts from GitHub API for historical projects

---

### 2. **Uneven Temporal Distribution**
**Severity:** High
**Affected:** All data

**Problem:**
- Snapshot frequency varies dramatically: 1 to 31 snapshots per month
- Some months have 1 snapshot (25 projects), others have 31 (15,763 projects)
- 31x variance in data density across time periods

**Examples:**
```
Sparse months (1 snapshot):
- 2015-04: 25 projects
- 2015-06: 25 projects
- 2016-11: 25 projects

Dense months (31 snapshots):
- 2019-05: 4,650 projects
- 2020-01: 17,446 projects
- 2020-05: 15,763 projects
```

**Impact:**
- Over-representation of 2019-2020 period
- Monthly scores favor periods with more snapshots
- Difficult to compare across time periods fairly
- Projects appearing in dense months get inflated scores

**Recommendation:**
- Normalize scores by dividing by number of snapshots per month
- Weight monthly rankings by data density
- Consider resampling to create uniform temporal distribution

---

### 3. **Inconsistent Star/Fork Count Timing**
**Severity:** Medium
**Affected:** All entries with star counts (67.8%)

**Problem:**
- Star/fork counts are "maximum ever recorded" across all snapshots
- A 2015 project's star count might be from 2025
- A 2025 project's star count is from 2025
- Not temporally consistent or comparable

**Example Issues:**
```
Project A (trending 2015):
- Trending date: 2015-03-15
- Star count: 100,000 (scraped 2025)
- Had 10 years to accumulate stars

Project B (trending 2025):
- Trending date: 2025-03-15
- Star count: 20,000 (scraped 2025)
- Had 0 years to accumulate stars

Issue: Can't fairly compare popularity
```

**Impact:**
- Older projects appear more popular (survival bias)
- Can't analyze "stars at time of trending"
- Misleading for popularity comparisons across eras

**Recommendation:**
- Document this clearly: "Stars represent current popularity, not popularity when trending"
- Consider using trending score only for cross-era comparisons
- For accurate historical analysis, would need to scrape stars from archived snapshots

---

### 4. **Multiple Appearances Bias**
**Severity:** Medium
**Affected:** Scoring methodology

**Problem:**
- Some projects appear 1,900+ times, others appear once
- Scoring favors projects that "stick around" on trending
- Brief but intense viral projects get undervalued

**Distribution:**
```
1 appearance: 1,129 projects (7.8%)
2-5 appearances: 1,852 projects (12.8%)
6-10 appearances: 3,732 projects (25.7%)
11-50 appearances: 6,005 projects (41.4%)
50+ appearances: 1,782 projects (12.3%)
```

**Most Over-Represented:**
```
1. jwasham/coding-interview-university: 1,948 appearances
2. TheAlgorithms/Python: 1,891 appearances
3. donnemartin/system-design-primer: 1,865 appearances
4. public-apis/public-apis: 1,830 appearances
5. EbookFoundation/free-programming-books: 1,737 appearances
```

**Impact:**
- "Evergreen" educational repos dominate rankings
- Viral new projects undervalued if they trend briefly
- Doesn't distinguish between sustained vs. brief trending

**Recommendation:**
- Create separate rankings: "Most Consistent" vs "Peak Trending"
- Add "peak rank achieved" metric
- Consider decay function for repeated appearances

---

### 5. **Linear Scoring Assumption**
**Severity:** Low-Medium
**Affected:** Monthly rankings

**Problem:**
- Current scoring: Rank 1 = 25 pts, Rank 2 = 24 pts (linear)
- Assumes rank 1β†’2 has same value as rank 24β†’25
- In reality, top positions have exponentially more visibility

**Distribution:**
```
Rank 1-5: 90,280 entries (21.3%)
Rank 6-10: 90,178 entries (21.3%)
Rank 11-15: 87,522 entries (20.7%)
Rank 16-20: 79,516 entries (18.8%)
Rank 21-25: 75,602 entries (17.9%)
```

**Impact:**
- Undervalues #1 position
- May not reflect actual visibility/impact differences
- Alternative exponential scoring might be more accurate

**Recommendation:**
- Consider exponential scoring: 2^(25-rank)
- Or logarithmic: log(26-rank)
- A/B test different scoring functions against actual star growth

---

### 6. **Failed Scrapes & Missing Data**
**Severity:** Medium
**Affected:** 1,937 URLs (10.2%)

**Problem:**
- SSL/TLS incompatibility with 2014-2019 Wayback snapshots
- Incomplete Wayback Machine captures
- Connection timeouts and 503 errors

**Impact:**
- Gaps in temporal coverage
- Some dates completely missing
- Potential systematic bias if certain types of snapshots fail more

**Affected Periods:**
```
2014-10-01 to 2014-12-21: Many failures
2016-02-24 to 2016-03-11: Several failures
2019-06-12 to 2019-12-31: Heavy failures (mid-2019 SSL issues)
2024-10-28: 3 failures (503 errors)
```

**Recommendation:**
- Retry failed URLs periodically (Wayback Machine availability changes)
- Use GitHub API to fill gaps where possible
- Document missing date ranges in analysis

---

### 7. **Rank Distribution Skew**
**Severity:** Low
**Affected:** Lower-ranked entries

**Problem:**
- Fewer entries at ranks 21-25 (75,602) vs ranks 1-5 (90,280)
- Suggests some snapshots had <25 projects
- Or extraction issues with lower-ranked items

**Impact:**
- Scoring may overvalue top ranks due to sample size
- Statistical significance varies by rank position

**Recommendation:**
- Filter analysis to top 20 for consistency
- Or normalize scores by rank availability

---

## πŸ“Š Dataset Quality Metrics

### Completeness
```
βœ… Temporal Coverage: 89.8% (128/142 months have data)
❌ Star/Fork Data: 67.8% complete (missing all pre-2020)
βœ… Rank Data: 100% complete
βœ… Repository Names: 100% complete
```

### Consistency
```
❌ Snapshot Frequency: Highly inconsistent (1-31 per month)
❌ Star Count Timing: Not temporally aligned
⚠️  Scoring Methodology: Linear assumption (debatable)
```

### Reliability
```
βœ… Scraping Success: 89.8%
❌ Failed URLs: 10.2% (recoverable with retry)
βœ… Data Validation: No duplicate entries detected
```

---

## πŸ”§ Recommended Fixes

### High Priority
1. **Add normalized scores** that account for snapshot frequency
2. **Document star count timing issue** prominently in analysis
3. **Create separate pre-2020 and post-2020 analyses** due to missing data
4. **Retry failed URLs** to improve coverage

### Medium Priority
5. **Test exponential scoring** vs linear for better accuracy
6. **Add "peak rank" metric** to identify viral projects
7. **Separate "evergreen" vs "viral" rankings**
8. **Scrape current GitHub API data** to fill historical gaps

### Low Priority
9. Create confidence intervals for sparse months
10. Add data quality flags per entry
11. Document GitHub trending algorithm changes over time

---

## πŸ“ Usage Guidelines

### βœ… Good Uses
- Identifying trending patterns in 2020-2025 (complete data)
- Analyzing trending frequency/consistency
- Discovering historically significant projects
- Comparative analysis within same time period

### ⚠️ Use With Caution
- Cross-era popularity comparisons (star count issues)
- Monthly comparisons with very different snapshot counts
- Absolute popularity rankings (use GitHub API instead)
- Historical analysis pre-2020 (missing star/fork data)

### ❌ Not Recommended
- Claiming "most popular project ever" (timing issues)
- Direct star count comparisons across decades
- Precise month-to-month trending velocity analysis (uneven sampling)
- Analysis of projects that trended <5 times (insufficient data)

---

## πŸ“ˆ Data Quality by Year

| Year | Projects | Star Data | Snapshots | Quality Grade |
|------|----------|-----------|-----------|---------------|
| 2013 | 150      | 0%        | Low       | D (Minimal)   |
| 2014 | 125      | 0%        | Low       | D (Minimal)   |
| 2015 | 325      | 0%        | Low       | D (Minimal)   |
| 2016 | 1,200    | 0%        | Low       | D (Minimal)   |
| 2017 | 1,550    | 0%        | Low       | D (Minimal)   |
| 2018 | 4,324    | 0%        | Medium    | C- (Limited)  |
| 2019 | 17,475   | 0%        | High      | C+ (Incomplete)|
| 2020 | 108,672  | 100%      | High      | A- (Excellent)|
| 2021 | 70,006   | 100%      | High      | A- (Excellent)|
| 2022 | 74,915   | 100%      | High      | A- (Excellent)|
| 2023 | 73,674   | 100%      | High      | A- (Excellent)|
| 2024 | 46,538   | 100%      | High      | A- (Excellent)|
| 2025 | 24,144   | 100%      | Medium    | A- (Excellent)|

---

## 🎯 Conclusion

This dataset is **excellent for 2020-2025 analysis** but has **significant limitations for historical (2013-2019) analysis**. The primary issues are:

1. **Missing star/fork data pre-2020** (structural limitation)
2. **Uneven temporal distribution** (Wayback Machine artifact)
3. **Star count timing inconsistency** (methodology issue)

These issues are **documentable and manageable** but should be clearly communicated in any analysis or visualization using this data.

**Overall Grade: B+**
- A+ for recent data (2020-2025)
- C+ for historical data (2013-2019)
- Excellent for trending patterns, limited for absolute popularity metrics