HERBench / herbench.py
DanBenAmi's picture
Fix Dataset Viewer schema mismatch (v1.0.3)
09f2789
raw
history blame
7.23 kB
"""
HERBench Hugging Face Datasets loading script.
Why this file exists:
- Hugging Face Dataset Viewer auto-parses JSON files if no loading script is detected.
- Auto-parsing uses pandas->pyarrow inference and can fail when nested fields (like `metadata`)
have inconsistent shapes across rows (common in multi-task benchmarks).
- By providing a proper datasets loading script named after the repo (`herbench.py` for HERBench),
the Hub will use this builder instead, with an explicit, stable schema.
This script ensures streaming compatibility and robust schema handling for the Dataset Viewer.
"""
from __future__ import annotations
import json
from typing import Any, Dict, Iterator
import datasets
_DESCRIPTION = """\
HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering.
This dataset contains multiple-choice questions grounded in long videos and designed to
require integration of multiple temporally separated cues (high evidential requirement).
"""
_HOMEPAGE = "https://github.com/DanBenAmi/HERBench"
_LICENSE = "CC-BY-NC-SA-4.0"
_CITATION = """\
@article{herbench2025,
title={HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering},
author={Ben-Ami, Dan and Serussi, Gabriele and Cohen, Kobi and Baskin, Chaim},
journal={arXiv preprint arXiv:XXXX.XXXXX},
year={2025}
}
"""
_VERSION = "1.0.3"
class HERBenchConfig(datasets.BuilderConfig):
"""BuilderConfig for HERBench."""
pass
class HERBench(datasets.GeneratorBasedBuilder):
"""HERBench Dataset: Multi-Evidence Integration in Video QA."""
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIGS = [
HERBenchConfig(
name="full",
version=VERSION,
description="Full HERBench dataset (27,936 questions; 335 videos; ~161GB).",
),
HERBenchConfig(
name="lite",
version=VERSION,
description="HERBench-Lite subset (~5,600 questions; ~67 videos; ~35GB for quick prototyping).",
),
]
# Make the Hub viewer default to the smaller config (faster and less error-prone).
DEFAULT_CONFIG_NAME = "lite"
def _info(self) -> datasets.DatasetInfo:
"""
Define the dataset schema with strict, stable types for all fields.
IMPORTANT: Keep features stable across all rows.
`metadata` in the raw JSON varies by task (different keys / nested lists).
To keep the schema consistent for Arrow + Dataset Viewer:
- Expose common metadata fields as flat, typed columns
- Store the full raw metadata dict as a JSON string in `metadata_json`
"""
features = datasets.Features(
{
# Core fields
"question_id": datasets.Value("string"),
"video_id": datasets.Value("string"),
"video_path": datasets.Value("string"),
"question": datasets.Value("string"),
"choices": datasets.Sequence(datasets.Value("string")),
"answer": datasets.Value("string"),
"answer_index": datasets.Value("int32"),
"answer_text": datasets.Value("string"),
"task_type": datasets.Value("string"),
# Common metadata fields (flat, typed)
"source_dataset": datasets.Value("string"),
"duration": datasets.Value("float32"),
"resolution": datasets.Value("string"),
# Full raw metadata as JSON string (stable schema)
"metadata_json": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
version=self.VERSION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
"""
Define data splits. Downloads only the JSON annotations for streaming efficiency.
Videos are referenced by path but not downloaded during viewer loading.
"""
if self.config.name == "lite":
annotations_file = "data/herbench_annotations_lite.json"
else:
annotations_file = "data/herbench_annotations.json"
# Download only annotations (not videos) for Dataset Viewer efficiency
data_files = dl_manager.download(
{
"annotations": annotations_file,
}
)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"annotations_file": data_files["annotations"]},
)
]
def _generate_examples(self, annotations_file: str) -> Iterator[tuple[int, Dict[str, Any]]]:
"""
Yield examples from the annotations file with robust type handling.
This method ensures:
- Streaming compatibility (processes one example at a time)
- Stable schema (all fields have consistent types)
- Defensive parsing (handles missing/malformed fields gracefully)
"""
with open(annotations_file, encoding="utf-8") as f:
annotations = json.load(f)
for idx, ann in enumerate(annotations):
# Extract and normalize metadata
md = ann.get("metadata")
if md is None or not isinstance(md, dict):
# Defensive: ensure metadata is always a dict
md = {}
# Extract common metadata fields with defaults
source_dataset = md.get("source_dataset", "unknown")
duration = md.get("duration", 0.0)
resolution = md.get("resolution", "unknown")
# Normalize numeric types to avoid Arrow type inference issues
try:
duration_f = float(duration) if duration is not None else 0.0
except (ValueError, TypeError):
duration_f = 0.0
# Normalize choices field
choices = ann.get("choices", [])
if not isinstance(choices, list):
choices = []
# Normalize answer_index
answer_index = ann.get("answer_index", 0)
try:
answer_index = int(answer_index) if answer_index is not None else 0
except (ValueError, TypeError):
answer_index = 0
yield idx, {
"question_id": str(ann.get("question_id", f"HER_{idx:06d}")),
"video_id": str(ann.get("video_id", "")),
"video_path": str(ann.get("video_path", "")),
"question": str(ann.get("question", "")),
"choices": [str(x) for x in choices],
"answer": str(ann.get("answer", "")),
"answer_index": answer_index,
"answer_text": str(ann.get("answer_text", "")),
"task_type": str(ann.get("task_type", "unknown")),
"source_dataset": str(source_dataset),
"duration": duration_f,
"resolution": str(resolution),
"metadata_json": json.dumps(md, ensure_ascii=False),
}