DanBenAmi commited on
Commit
471524a
·
1 Parent(s): 58bf035

Convert to Parquet format for Dataset Viewer compatibility

Browse files

HuggingFace deprecated custom loading scripts. Switching to Parquet format with auto-loading:

Changes:
- Remove deprecated scripts: HERBench.py, herbench.py
- Add Parquet files with Git LFS: herbench_full.parquet (4.87 MB), herbench_lite.parquet (1.02 MB)
- Update README.md YAML to use Parquet with explicit configs
- Add comprehensive data format documentation and usage examples
- Update .gitattributes to track Parquet files with Git LFS
- Keep original JSON files for users who need raw format

Parquet format ensures:
- Reliable schema handling (fixes Arrow conversion errors)
- Better performance for large datasets
- Full compatibility with HF Dataset Viewer
- Support for varying metadata structures across task types

.gitattributes CHANGED
@@ -1,5 +1,4 @@
1
  # Git LFS configuration for large files
2
-
3
  # Videos and archives (to be uploaded via HF CLI)
4
  *.tar.part.* filter=lfs diff=lfs merge=lfs -text
5
  *.tar filter=lfs diff=lfs merge=lfs -text
@@ -7,13 +6,13 @@
7
  *.avi filter=lfs diff=lfs merge=lfs -text
8
  *.mov filter=lfs diff=lfs merge=lfs -text
9
  *.mkv filter=lfs diff=lfs merge=lfs -text
10
-
11
  # Image files (to be uploaded via HF CLI)
12
  *.png filter=lfs diff=lfs merge=lfs -text
13
  *.jpg filter=lfs diff=lfs merge=lfs -text
14
  *.jpeg filter=lfs diff=lfs merge=lfs -text
15
-
16
  # Large annotation files (to be uploaded via HF CLI)
17
  data/herbench_annotations.json filter=lfs diff=lfs merge=lfs -text
18
  data/herbench_annotations_lite.json filter=lfs diff=lfs merge=lfs -text
19
  data/*.json filter=lfs diff=lfs merge=lfs -text
 
 
 
1
  # Git LFS configuration for large files
 
2
  # Videos and archives (to be uploaded via HF CLI)
3
  *.tar.part.* filter=lfs diff=lfs merge=lfs -text
4
  *.tar filter=lfs diff=lfs merge=lfs -text
 
6
  *.avi filter=lfs diff=lfs merge=lfs -text
7
  *.mov filter=lfs diff=lfs merge=lfs -text
8
  *.mkv filter=lfs diff=lfs merge=lfs -text
 
9
  # Image files (to be uploaded via HF CLI)
10
  *.png filter=lfs diff=lfs merge=lfs -text
11
  *.jpg filter=lfs diff=lfs merge=lfs -text
12
  *.jpeg filter=lfs diff=lfs merge=lfs -text
 
13
  # Large annotation files (to be uploaded via HF CLI)
14
  data/herbench_annotations.json filter=lfs diff=lfs merge=lfs -text
15
  data/herbench_annotations_lite.json filter=lfs diff=lfs merge=lfs -text
16
  data/*.json filter=lfs diff=lfs merge=lfs -text
17
+ # Parquet files
18
+ data/*.parquet filter=lfs diff=lfs merge=lfs -text
HERBench.py DELETED
@@ -1,194 +0,0 @@
1
- """
2
- HERBench Hugging Face Datasets loading script.
3
-
4
- Why this file exists:
5
- - Hugging Face Dataset Viewer auto-parses JSON files if no loading script is detected.
6
- - Auto-parsing uses pandas->pyarrow inference and can fail when nested fields (like `metadata`)
7
- have inconsistent shapes across rows (common in multi-task benchmarks).
8
- - By providing a proper datasets loading script named after the repo (`herbench.py` for HERBench),
9
- the Hub will use this builder instead, with an explicit, stable schema.
10
-
11
- This script ensures streaming compatibility and robust schema handling for the Dataset Viewer.
12
- """
13
-
14
- from __future__ import annotations
15
-
16
- import json
17
- from typing import Any, Dict, Iterator
18
-
19
- import datasets
20
-
21
-
22
- _DESCRIPTION = """\
23
- HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering.
24
-
25
- This dataset contains multiple-choice questions grounded in long videos and designed to
26
- require integration of multiple temporally separated cues (high evidential requirement).
27
- """
28
-
29
- _HOMEPAGE = "https://github.com/DanBenAmi/HERBench"
30
- _LICENSE = "CC-BY-NC-SA-4.0"
31
-
32
- _CITATION = """\
33
- @article{herbench2025,
34
- title={HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering},
35
- author={Ben-Ami, Dan and Serussi, Gabriele and Cohen, Kobi and Baskin, Chaim},
36
- journal={arXiv preprint arXiv:XXXX.XXXXX},
37
- year={2025}
38
- }
39
- """
40
-
41
- _VERSION = "1.0.3"
42
-
43
-
44
- class HERBenchConfig(datasets.BuilderConfig):
45
- """BuilderConfig for HERBench."""
46
- pass
47
-
48
-
49
- class HERBench(datasets.GeneratorBasedBuilder):
50
- """HERBench Dataset: Multi-Evidence Integration in Video QA."""
51
-
52
- VERSION = datasets.Version(_VERSION)
53
-
54
- BUILDER_CONFIGS = [
55
- HERBenchConfig(
56
- name="full",
57
- version=VERSION,
58
- description="Full HERBench dataset (27,936 questions; 335 videos; ~161GB).",
59
- ),
60
- HERBenchConfig(
61
- name="lite",
62
- version=VERSION,
63
- description="HERBench-Lite subset (~5,600 questions; ~67 videos; ~35GB for quick prototyping).",
64
- ),
65
- ]
66
-
67
- # Make the Hub viewer default to the smaller config (faster and less error-prone).
68
- DEFAULT_CONFIG_NAME = "lite"
69
-
70
- def _info(self) -> datasets.DatasetInfo:
71
- """
72
- Define the dataset schema with strict, stable types for all fields.
73
-
74
- IMPORTANT: Keep features stable across all rows.
75
- `metadata` in the raw JSON varies by task (different keys / nested lists).
76
- To keep the schema consistent for Arrow + Dataset Viewer:
77
- - Expose common metadata fields as flat, typed columns
78
- - Store the full raw metadata dict as a JSON string in `metadata_json`
79
- """
80
- features = datasets.Features(
81
- {
82
- # Core fields
83
- "question_id": datasets.Value("string"),
84
- "video_id": datasets.Value("string"),
85
- "video_path": datasets.Value("string"),
86
- "question": datasets.Value("string"),
87
- "choices": datasets.Sequence(datasets.Value("string")),
88
- "answer": datasets.Value("string"),
89
- "answer_index": datasets.Value("int32"),
90
- "answer_text": datasets.Value("string"),
91
- "task_type": datasets.Value("string"),
92
-
93
- # Common metadata fields (flat, typed)
94
- "source_dataset": datasets.Value("string"),
95
- "duration": datasets.Value("float32"),
96
- "resolution": datasets.Value("string"),
97
-
98
- # Full raw metadata as JSON string (stable schema)
99
- "metadata_json": datasets.Value("string"),
100
- }
101
- )
102
-
103
- return datasets.DatasetInfo(
104
- description=_DESCRIPTION,
105
- features=features,
106
- homepage=_HOMEPAGE,
107
- license=_LICENSE,
108
- citation=_CITATION,
109
- version=self.VERSION,
110
- )
111
-
112
- def _split_generators(self, dl_manager: datasets.DownloadManager):
113
- """
114
- Define data splits. Downloads only the JSON annotations for streaming efficiency.
115
- Videos are referenced by path but not downloaded during viewer loading.
116
- """
117
- if self.config.name == "lite":
118
- annotations_file = "data/herbench_annotations_lite.json"
119
- else:
120
- annotations_file = "data/herbench_annotations.json"
121
-
122
- # Download only annotations (not videos) for Dataset Viewer efficiency
123
- data_files = dl_manager.download(
124
- {
125
- "annotations": annotations_file,
126
- }
127
- )
128
-
129
- return [
130
- datasets.SplitGenerator(
131
- name=datasets.Split.TEST,
132
- gen_kwargs={"annotations_file": data_files["annotations"]},
133
- )
134
- ]
135
-
136
- def _generate_examples(self, annotations_file: str) -> Iterator[tuple[int, Dict[str, Any]]]:
137
- """
138
- Yield examples from the annotations file with robust type handling.
139
-
140
- This method ensures:
141
- - Streaming compatibility (processes one example at a time)
142
- - Stable schema (all fields have consistent types)
143
- - Defensive parsing (handles missing/malformed fields gracefully)
144
- """
145
- with open(annotations_file, encoding="utf-8") as f:
146
- annotations = json.load(f)
147
-
148
- for idx, ann in enumerate(annotations):
149
- # Extract and normalize metadata
150
- md = ann.get("metadata")
151
- if md is None or not isinstance(md, dict):
152
- # Defensive: ensure metadata is always a dict
153
- md = {}
154
-
155
- # Extract common metadata fields with defaults
156
- source_dataset = md.get("source_dataset", "unknown")
157
- duration = md.get("duration", 0.0)
158
- resolution = md.get("resolution", "unknown")
159
-
160
- # Normalize numeric types to avoid Arrow type inference issues
161
- try:
162
- duration_f = float(duration) if duration is not None else 0.0
163
- except (ValueError, TypeError):
164
- duration_f = 0.0
165
-
166
- # Normalize choices field
167
- choices = ann.get("choices", [])
168
- if not isinstance(choices, list):
169
- choices = []
170
-
171
- # Normalize answer_index
172
- answer_index = ann.get("answer_index", 0)
173
- try:
174
- answer_index = int(answer_index) if answer_index is not None else 0
175
- except (ValueError, TypeError):
176
- answer_index = 0
177
-
178
- yield idx, {
179
- "question_id": str(ann.get("question_id", f"HER_{idx:06d}")),
180
- "video_id": str(ann.get("video_id", "")),
181
- "video_path": str(ann.get("video_path", "")),
182
- "question": str(ann.get("question", "")),
183
- "choices": [str(x) for x in choices],
184
- "answer": str(ann.get("answer", "")),
185
- "answer_index": answer_index,
186
- "answer_text": str(ann.get("answer_text", "")),
187
- "task_type": str(ann.get("task_type", "unknown")),
188
- "source_dataset": str(source_dataset),
189
- "duration": duration_f,
190
- "resolution": str(resolution),
191
- "metadata_json": json.dumps(md, ensure_ascii=False),
192
- }
193
-
194
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -15,6 +15,16 @@ tags:
15
  size_categories:
16
  - 10K<n<100K
17
  pretty_name: HERBench
 
 
 
 
 
 
 
 
 
 
18
  ---
19
 
20
  # HERBench: Multi-Evidence Integration in Video Question Answering
@@ -245,9 +255,9 @@ pip install huggingface-hub
245
  # Download FULL version (27,936 questions, ~161 GB)
246
  huggingface-cli download DanBenAmi/HERBench --repo-type dataset --local-dir HERBench
247
 
248
- # Download LITE version only (5,600 questions, ~35 GB)
249
  huggingface-cli download DanBenAmi/HERBench \
250
- --include "data/herbench_annotations_lite.json" \
251
  --include "data/*metadata.json" \
252
  --include "videos/videos.tar.part.00" \
253
  --include "videos/videos.tar.part.01" \
@@ -257,24 +267,54 @@ huggingface-cli download DanBenAmi/HERBench \
257
  --include "videos/videos.tar.checksums.txt" \
258
  --local-dir HERBench
259
 
260
- # Or download only annotations (no videos)
261
- huggingface-cli download DanBenAmi/HERBench --include "data/*" --local-dir HERBench
262
  ```
263
 
264
- #### Option B: Using Python
 
 
265
 
266
  ```python
267
  from datasets import load_dataset
268
 
269
- # Load FULL version (default)
270
- dataset_full = load_dataset("DanBenAmi/HERBench", name="full")
271
  print(f"Total questions: {len(dataset_full['test'])}")
272
 
273
- # Load LITE version
274
- dataset_lite = load_dataset("DanBenAmi/HERBench", name="lite")
275
- print(f"Total questions: {len(dataset_lite['test'])}")
 
 
 
 
 
 
 
 
 
 
 
276
  ```
277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278
  ### 2. Extract Videos
279
 
280
  #### For Full Version:
 
15
  size_categories:
16
  - 10K<n<100K
17
  pretty_name: HERBench
18
+ configs:
19
+ - config_name: full
20
+ data_files:
21
+ - split: test
22
+ path: data/herbench_full.parquet
23
+ default: true
24
+ - config_name: lite
25
+ data_files:
26
+ - split: test
27
+ path: data/herbench_lite.parquet
28
  ---
29
 
30
  # HERBench: Multi-Evidence Integration in Video Question Answering
 
255
  # Download FULL version (27,936 questions, ~161 GB)
256
  huggingface-cli download DanBenAmi/HERBench --repo-type dataset --local-dir HERBench
257
 
258
+ # Download LITE version only (~5,600 questions, ~35 GB videos)
259
  huggingface-cli download DanBenAmi/HERBench \
260
+ --include "data/herbench_lite.parquet" \
261
  --include "data/*metadata.json" \
262
  --include "videos/videos.tar.part.00" \
263
  --include "videos/videos.tar.part.01" \
 
267
  --include "videos/videos.tar.checksums.txt" \
268
  --local-dir HERBench
269
 
270
+ # Or download only annotations (no videos, ~6 MB)
271
+ huggingface-cli download DanBenAmi/HERBench --include "data/*.parquet" --include "data/*metadata.json" --local-dir HERBench
272
  ```
273
 
274
+ #### Option B: Using Python (Datasets Library)
275
+
276
+ The dataset is provided in **Parquet format** for optimal compatibility with HuggingFace Datasets and reliable schema handling.
277
 
278
  ```python
279
  from datasets import load_dataset
280
 
281
+ # Load FULL version (default) - 27,936 questions
282
+ dataset_full = load_dataset("DanBenAmi/HERBench", "full")
283
  print(f"Total questions: {len(dataset_full['test'])}")
284
 
285
+ # Access test split
286
+ test_data = dataset_full["test"]
287
+
288
+ # Get a single example
289
+ example = test_data[0]
290
+ print(f"Question: {example['question']}")
291
+ print(f"Choices: {example['choices']}")
292
+ print(f"Answer: {example['answer']}")
293
+ print(f"Task: {example['task_type']}")
294
+ print(f"Video: {example['video_path']}")
295
+
296
+ # Load LITE version - ~5,600 questions (20% sample)
297
+ dataset_lite = load_dataset("DanBenAmi/HERBench", "lite")
298
+ print(f"Lite questions: {len(dataset_lite['test'])}")
299
  ```
300
 
301
+ **Schema:** Each example contains:
302
+ - `question_id` - Unique question identifier
303
+ - `video_id` - Video identifier
304
+ - `video_path` - Path to video file
305
+ - `question` - Question text
306
+ - `choices` - List of 5 multiple-choice options
307
+ - `answer` - Correct answer (A/B/C/D/E)
308
+ - `answer_index` - Zero-indexed answer position (0-4)
309
+ - `answer_text` - Answer value
310
+ - `task_type` - Task category name
311
+ - `source_dataset` - Source dataset name
312
+ - `duration` - Video duration in seconds (float)
313
+ - `resolution` - Video resolution (width x height)
314
+ - `metadata_json` - Full metadata as JSON string
315
+
316
+ **Note:** Original JSON files are also available in the `data/` folder for users who need the raw format for custom processing.
317
+
318
  ### 2. Extract Videos
319
 
320
  #### For Full Version:
data/herbench_full.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f20408f18527cccc8e6ef7a50d8d3c28979b8f90679c9e4ebcb5e44053b41b5a
3
+ size 5112320
data/herbench_lite.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88dd9768ce2a1a6d565b986fca41db9ecee72d5943f352aa95302bef3e94e2f4
3
+ size 1067411
herbench.py DELETED
@@ -1,194 +0,0 @@
1
- """
2
- HERBench Hugging Face Datasets loading script.
3
-
4
- Why this file exists:
5
- - Hugging Face Dataset Viewer auto-parses JSON files if no loading script is detected.
6
- - Auto-parsing uses pandas->pyarrow inference and can fail when nested fields (like `metadata`)
7
- have inconsistent shapes across rows (common in multi-task benchmarks).
8
- - By providing a proper datasets loading script named after the repo (`herbench.py` for HERBench),
9
- the Hub will use this builder instead, with an explicit, stable schema.
10
-
11
- This script ensures streaming compatibility and robust schema handling for the Dataset Viewer.
12
- """
13
-
14
- from __future__ import annotations
15
-
16
- import json
17
- from typing import Any, Dict, Iterator
18
-
19
- import datasets
20
-
21
-
22
- _DESCRIPTION = """\
23
- HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering.
24
-
25
- This dataset contains multiple-choice questions grounded in long videos and designed to
26
- require integration of multiple temporally separated cues (high evidential requirement).
27
- """
28
-
29
- _HOMEPAGE = "https://github.com/DanBenAmi/HERBench"
30
- _LICENSE = "CC-BY-NC-SA-4.0"
31
-
32
- _CITATION = """\
33
- @article{herbench2025,
34
- title={HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering},
35
- author={Ben-Ami, Dan and Serussi, Gabriele and Cohen, Kobi and Baskin, Chaim},
36
- journal={arXiv preprint arXiv:XXXX.XXXXX},
37
- year={2025}
38
- }
39
- """
40
-
41
- _VERSION = "1.0.3"
42
-
43
-
44
- class HERBenchConfig(datasets.BuilderConfig):
45
- """BuilderConfig for HERBench."""
46
- pass
47
-
48
-
49
- class HERBench(datasets.GeneratorBasedBuilder):
50
- """HERBench Dataset: Multi-Evidence Integration in Video QA."""
51
-
52
- VERSION = datasets.Version(_VERSION)
53
-
54
- BUILDER_CONFIGS = [
55
- HERBenchConfig(
56
- name="full",
57
- version=VERSION,
58
- description="Full HERBench dataset (27,936 questions; 335 videos; ~161GB).",
59
- ),
60
- HERBenchConfig(
61
- name="lite",
62
- version=VERSION,
63
- description="HERBench-Lite subset (~5,600 questions; ~67 videos; ~35GB for quick prototyping).",
64
- ),
65
- ]
66
-
67
- # Make the Hub viewer default to the smaller config (faster and less error-prone).
68
- DEFAULT_CONFIG_NAME = "lite"
69
-
70
- def _info(self) -> datasets.DatasetInfo:
71
- """
72
- Define the dataset schema with strict, stable types for all fields.
73
-
74
- IMPORTANT: Keep features stable across all rows.
75
- `metadata` in the raw JSON varies by task (different keys / nested lists).
76
- To keep the schema consistent for Arrow + Dataset Viewer:
77
- - Expose common metadata fields as flat, typed columns
78
- - Store the full raw metadata dict as a JSON string in `metadata_json`
79
- """
80
- features = datasets.Features(
81
- {
82
- # Core fields
83
- "question_id": datasets.Value("string"),
84
- "video_id": datasets.Value("string"),
85
- "video_path": datasets.Value("string"),
86
- "question": datasets.Value("string"),
87
- "choices": datasets.Sequence(datasets.Value("string")),
88
- "answer": datasets.Value("string"),
89
- "answer_index": datasets.Value("int32"),
90
- "answer_text": datasets.Value("string"),
91
- "task_type": datasets.Value("string"),
92
-
93
- # Common metadata fields (flat, typed)
94
- "source_dataset": datasets.Value("string"),
95
- "duration": datasets.Value("float32"),
96
- "resolution": datasets.Value("string"),
97
-
98
- # Full raw metadata as JSON string (stable schema)
99
- "metadata_json": datasets.Value("string"),
100
- }
101
- )
102
-
103
- return datasets.DatasetInfo(
104
- description=_DESCRIPTION,
105
- features=features,
106
- homepage=_HOMEPAGE,
107
- license=_LICENSE,
108
- citation=_CITATION,
109
- version=self.VERSION,
110
- )
111
-
112
- def _split_generators(self, dl_manager: datasets.DownloadManager):
113
- """
114
- Define data splits. Downloads only the JSON annotations for streaming efficiency.
115
- Videos are referenced by path but not downloaded during viewer loading.
116
- """
117
- if self.config.name == "lite":
118
- annotations_file = "data/herbench_annotations_lite.json"
119
- else:
120
- annotations_file = "data/herbench_annotations.json"
121
-
122
- # Download only annotations (not videos) for Dataset Viewer efficiency
123
- data_files = dl_manager.download(
124
- {
125
- "annotations": annotations_file,
126
- }
127
- )
128
-
129
- return [
130
- datasets.SplitGenerator(
131
- name=datasets.Split.TEST,
132
- gen_kwargs={"annotations_file": data_files["annotations"]},
133
- )
134
- ]
135
-
136
- def _generate_examples(self, annotations_file: str) -> Iterator[tuple[int, Dict[str, Any]]]:
137
- """
138
- Yield examples from the annotations file with robust type handling.
139
-
140
- This method ensures:
141
- - Streaming compatibility (processes one example at a time)
142
- - Stable schema (all fields have consistent types)
143
- - Defensive parsing (handles missing/malformed fields gracefully)
144
- """
145
- with open(annotations_file, encoding="utf-8") as f:
146
- annotations = json.load(f)
147
-
148
- for idx, ann in enumerate(annotations):
149
- # Extract and normalize metadata
150
- md = ann.get("metadata")
151
- if md is None or not isinstance(md, dict):
152
- # Defensive: ensure metadata is always a dict
153
- md = {}
154
-
155
- # Extract common metadata fields with defaults
156
- source_dataset = md.get("source_dataset", "unknown")
157
- duration = md.get("duration", 0.0)
158
- resolution = md.get("resolution", "unknown")
159
-
160
- # Normalize numeric types to avoid Arrow type inference issues
161
- try:
162
- duration_f = float(duration) if duration is not None else 0.0
163
- except (ValueError, TypeError):
164
- duration_f = 0.0
165
-
166
- # Normalize choices field
167
- choices = ann.get("choices", [])
168
- if not isinstance(choices, list):
169
- choices = []
170
-
171
- # Normalize answer_index
172
- answer_index = ann.get("answer_index", 0)
173
- try:
174
- answer_index = int(answer_index) if answer_index is not None else 0
175
- except (ValueError, TypeError):
176
- answer_index = 0
177
-
178
- yield idx, {
179
- "question_id": str(ann.get("question_id", f"HER_{idx:06d}")),
180
- "video_id": str(ann.get("video_id", "")),
181
- "video_path": str(ann.get("video_path", "")),
182
- "question": str(ann.get("question", "")),
183
- "choices": [str(x) for x in choices],
184
- "answer": str(ann.get("answer", "")),
185
- "answer_index": answer_index,
186
- "answer_text": str(ann.get("answer_text", "")),
187
- "task_type": str(ann.get("task_type", "unknown")),
188
- "source_dataset": str(source_dataset),
189
- "duration": duration_f,
190
- "resolution": str(resolution),
191
- "metadata_json": json.dumps(md, ensure_ascii=False),
192
- }
193
-
194
-