DanBenAmi commited on
Commit
9e54dc1
·
0 Parent(s):

Initial commit: HERBench dataset core files

Browse files
Files changed (6) hide show
  1. .gitattributes +19 -0
  2. .gitignore +50 -0
  3. CITATION.cff +50 -0
  4. LICENSE +63 -0
  5. README.md +443 -0
  6. herbench_loader.py +333 -0
.gitattributes ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Git LFS configuration for large files
2
+
3
+ # Videos and archives (to be uploaded via HF CLI)
4
+ *.tar.part.* filter=lfs diff=lfs merge=lfs -text
5
+ *.tar filter=lfs diff=lfs merge=lfs -text
6
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
7
+ *.avi filter=lfs diff=lfs merge=lfs -text
8
+ *.mov filter=lfs diff=lfs merge=lfs -text
9
+ *.mkv filter=lfs diff=lfs merge=lfs -text
10
+
11
+ # Image files (to be uploaded via HF CLI)
12
+ *.png filter=lfs diff=lfs merge=lfs -text
13
+ *.jpg filter=lfs diff=lfs merge=lfs -text
14
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
15
+
16
+ # Large annotation files (to be uploaded via HF CLI)
17
+ data/herbench_annotations.json filter=lfs diff=lfs merge=lfs -text
18
+ data/herbench_annotations_lite.json filter=lfs diff=lfs merge=lfs -text
19
+ data/*.json filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Videos directory (uploaded separately via HF CLI)
2
+ videos/
3
+
4
+ # Data directory (uploaded separately via HF CLI)
5
+ data/
6
+
7
+ # Assets directory (uploaded separately via HF CLI)
8
+ assets/
9
+
10
+ # Scripts directory (not uploaded to HF)
11
+ scripts/
12
+
13
+ # Build artifacts
14
+ __pycache__/
15
+ *.pyc
16
+ *.pyo
17
+ *.egg-info/
18
+ *.egg
19
+ dist/
20
+ build/
21
+
22
+ # Temporary files
23
+ *.tmp
24
+ *.temp
25
+ *.swp
26
+ *.swo
27
+ *~
28
+ .DS_Store
29
+ ._.DS_Store
30
+ Thumbs.db
31
+
32
+ # Local video directory (source videos)
33
+ /videos_source/
34
+
35
+ # Editor directories
36
+ .vscode/
37
+ .idea/
38
+ *.sublime-*
39
+
40
+ # Local testing
41
+ test_*.py
42
+ scratch/
43
+
44
+ # Documentation and summary files (not needed in HF repo)
45
+ CHANGES_SUMMARY.md
46
+ FIXES_APPLIED.md
47
+ PROJECT_SUMMARY.md
48
+ QUICK_START.txt
49
+ USAGE_INSTRUCTIONS.md
50
+ upload_videos.sh
CITATION.cff ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cff-version: 1.2.0
2
+ title: 'HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering'
3
+ message: >-
4
+ If you use this dataset, please cite it using the metadata from this file.
5
+ type: dataset
6
+ authors:
7
+ - family-names: Ben-Ami
8
+ given-names: Dan
9
10
+ - family-names: Serussi
11
+ given-names: Gabriele
12
13
+ - family-names: Cohen
14
+ given-names: Kobi
15
+ - family-names: Baskin
16
+ given-names: Chaim
17
+ repository-code: 'https://github.com/DanBenAmi/HERBench'
18
+ url: 'https://huggingface.co/datasets/DanBenAmi/HERBench'
19
+ abstract: >-
20
+ HERBench is a benchmark for evaluating multi-evidence integration in video question answering.
21
+ It contains 26,806 five-way multiple-choice questions across 337 unique videos with an average
22
+ length of 395 seconds. Each question enforces a High Evidential Requirement (ER), requiring
23
+ models to aggregate at least k ≥ 3 distinct, temporally separated visual cues. The benchmark
24
+ includes 12 compositional task types covering temporal reasoning, spatial reasoning, causal
25
+ reasoning, counting, comparison, and other multi-evidence challenges.
26
+ keywords:
27
+ - video understanding
28
+ - visual question answering
29
+ - multi-evidence reasoning
30
+ - temporal reasoning
31
+ - long video
32
+ - benchmark
33
+ license: CC-BY-NC-SA-4.0
34
+ date-released: '2025-01-01'
35
+ version: 1.0.0
36
+ preferred-citation:
37
+ type: article
38
+ authors:
39
+ - family-names: Ben-Ami
40
+ given-names: Dan
41
+ - family-names: Serussi
42
+ given-names: Gabriele
43
+ - family-names: Cohen
44
+ given-names: Kobi
45
+ - family-names: Baskin
46
+ given-names: Chaim
47
+ title: 'HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering'
48
+ year: 2025
49
+ journal: 'arXiv preprint'
50
+ notes: 'arXiv:XXXX.XXXXX (to be updated)'
LICENSE ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License
2
+
3
+ By exercising the Licensed Rights (defined below), You accept and agree to be bound
4
+ by the terms and conditions of this Creative Commons Attribution-NonCommercial-ShareAlike
5
+ 4.0 International Public License ("Public License"). To the extent this Public License may
6
+ be interpreted as a contract, You are granted the Licensed Rights in consideration of Your
7
+ acceptance of these terms and conditions, and the Licensor grants You such rights in
8
+ consideration of benefits the Licensor receives from making the Licensed Material available
9
+ under these terms and conditions.
10
+
11
+ Full License Text: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
12
+
13
+ ===================================================================================================
14
+
15
+ TERMS OF USE FOR HERBENCH DATASET
16
+
17
+ Copyright (c) 2025 Dan Ben-Ami, Gabriele Serussi, Kobi Cohen, Chaim Baskin
18
+
19
+ This dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
20
+ International License (CC BY-NC-SA 4.0).
21
+
22
+ You are free to:
23
+ - Share: copy and redistribute the material in any medium or format
24
+ - Adapt: remix, transform, and build upon the material
25
+
26
+ Under the following terms:
27
+ - Attribution: You must give appropriate credit, provide a link to the license, and indicate
28
+ if changes were made. You may do so in any reasonable manner, but not in any way that
29
+ suggests the licensor endorses you or your use.
30
+
31
+ - NonCommercial: You may not use the material for commercial purposes.
32
+
33
+ - ShareAlike: If you remix, transform, or build upon the material, you must distribute your
34
+ contributions under the same license as the original.
35
+
36
+ - No additional restrictions: You may not apply legal terms or technological measures that
37
+ legally restrict others from doing anything the license permits.
38
+
39
+ CITATION:
40
+ If you use this dataset in your research, please cite:
41
+
42
+ @article{herbench2025,
43
+ title={HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering},
44
+ author={Ben-Ami, Dan and Serussi, Gabriele and Cohen, Kobi and Baskin, Chaim},
45
+ journal={arXiv preprint arXiv:XXXX.XXXXX},
46
+ year={2025}
47
+ }
48
+
49
+ VIDEO SOURCES:
50
+ The videos in this dataset are sourced from:
51
+ - WildTrack Dataset (public dataset)
52
+ - HD-EPIC Dataset (first-person egocentric videos)
53
+ - PersonPath22 Dataset (person tracking dataset)
54
+ - Movie Trailers (public promotional content)
55
+
56
+ All rights to the original videos belong to their respective copyright holders. This dataset
57
+ is provided for academic research purposes only.
58
+
59
+ CONTACT:
60
+ - Dan Ben-Ami: [email protected]
61
+ - Gabriele Serussi: [email protected]
62
+
63
+ For more information, visit: https://github.com/DanBenAmi/HERBench
README.md ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: cc-by-nc-sa-4.0
5
+ task_categories:
6
+ - visual-question-answering
7
+ - multiple-choice
8
+ tags:
9
+ - video-understanding
10
+ - multi-evidence-reasoning
11
+ - long-video
12
+ - temporal-reasoning
13
+ - spatial-reasoning
14
+ - video-qa
15
+ size_categories:
16
+ - 10K<n<100K
17
+ pretty_name: HERBench
18
+ ---
19
+
20
+ # HERBench: Multi-Evidence Integration in Video Question Answering
21
+
22
+ <div align="center">
23
+
24
+ <img src="assets/HERBench_logo.png" alt="HERBench Logo" width="400"/>
25
+
26
+ [![Paper](https://img.shields.io/badge/arXiv-XXXX.XXXXX-b31b1b.svg)](https://arxiv.org/abs/XXXX.XXXXX)
27
+ [![GitHub](https://img.shields.io/badge/GitHub-HERBench-181717?logo=github)](https://github.com/DanBenAmi/HERBench)
28
+ [![Project Page](https://img.shields.io/badge/Project-Page-blue)](https://danbenami.github.io/herbench)
29
+ [![License](https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/)
30
+ [![HF Dataset](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Dataset-yellow)](https://huggingface.co/datasets/DanBenAmi/HERBench)
31
+
32
+ *A challenging benchmark for evaluating multi-evidence integration capabilities of vision-language models*
33
+
34
+ </div>
35
+
36
+ ---
37
+
38
+ ## 📋 Dataset Summary
39
+
40
+ **HERBench** is a challenging benchmark designed to evaluate vision-language models on **multi-evidence integration** in long videos. Unlike existing benchmarks where questions can often be answered from single frames, HERBench enforces a **High Evidential Requirement (ER)** where each question requires aggregating at least **k ≥ 3 distinct, temporally separated visual cues**.
41
+
42
+ <div align="center">
43
+ <img src="assets/Teaser_plot.jpg" alt="HERBench Teaser" width="800"/>
44
+ </div>
45
+
46
+ ### Key Statistics
47
+
48
+ | Metric | Full Version | Lite Version |
49
+ |--------|--------------|--------------|
50
+ | 📊 **Total Questions** | 27,936 five-way multiple-choice | ~5,600 questions (20%) |
51
+ | 🎬 **Videos** | 335 unique videos | ~67 videos (20%) |
52
+ | ⏱️ **Avg. Video Length** | 395 seconds (6.6 minutes) ||
53
+ | 📈 **Mean MRFS (Minimum Required Frame-Set)** | ~5.5 ||
54
+ | 📁 **Total Size** | ~161 GB | ~35 GB |
55
+
56
+ ### Why HERBench?
57
+
58
+ Current video QA benchmarks often allow models to answer questions using single frames or limited context, failing to test true multi-evidence reasoning. HERBench addresses this by:
59
+
60
+ ✅ **Enforcing multi-evidence integration** - Each question requires k ≥ 3 temporally separated frames
61
+ ✅ **Preventing single-frame shortcuts** - Questions cannot be answered from isolated frames
62
+ ✅ **Testing compositional reasoning** - Combines temporal, spatial, and causal reasoning
63
+ ✅ **Evaluating long-video understanding** - Average video length of 6.6 minutes
64
+
65
+ ### 🎯 Choose Your Version
66
+
67
+ HERBench is available in two versions to accommodate different storage and computational constraints:
68
+
69
+ #### Full Version (~161 GB)
70
+ - **27,936 questions** across **335 videos**
71
+ - Complete benchmark for comprehensive evaluation
72
+ - Recommended for: Final paper results, thorough model evaluation, benchmarking
73
+
74
+ #### Lite Version (~35 GB) 🚀
75
+ - **~5,600 questions** across **~67 videos** (20% subset)
76
+ - Same task distribution and difficulty as full version
77
+ - Videos sampled to maintain diversity across all 12 tasks
78
+ - Recommended for: Quick prototyping, limited storage, initial experiments, development
79
+
80
+ **Both versions maintain the same quality standards and high evidential requirements!**
81
+
82
+ ---
83
+
84
+ ## 📊 Leaderboard
85
+
86
+ Current state-of-the-art results on HERBench (Full benchmark):
87
+
88
+ | Model | Bench Version | # Frames | TR&C | R&T | GC&V | ME&N | Overall Avg. |
89
+ |-------|---------------|----------|------|-----|------|------|--------------|
90
+ | **Random Baseline** | Full | 16 | 20.0 | 20.0 | 20.0 | 20.0 | **20.0** |
91
+ | **GPT-4.1** | Full | 16 | 25.4 | 66.0 | 37.1 | 29.0 | **39.4** |
92
+ | **Gemini-2.5-Flash** | Full | 16 | 29.7 | 69.9 | 34.9 | 26.8 | **40.3** |
93
+ | **Qwen2.5-VL-72B** | Full | 16 | 26.9 | 70.9 | 36.6 | 24.4 | **39.7** |
94
+ | **Gemma-3-27B** | Full | 16 | 32.0 | 58.4 | 21.5 | 23.5 | **33.8** |
95
+ | **LLaMA-4-Scout-17B** | Full | 16 | 18.8 | 57.3 | 25.5 | 24.2 | **31.4** |
96
+ | **InternVL3.5-14B** | Full | 16 | 37.7 | 69.3 | 31.1 | 27.8 | **41.5** |
97
+ | **Ovis-2.5-9B** | Full | 16 | 18.9 | 73.5 | 46.8 | 29.2 | **42.1** |
98
+ | **InternVL3.5-8B** | Full | 16 | 33.6 | 70.2 | 29.7 | 30.8 | **41.1** |
99
+ | **LLaVA-OneVision1.5-8B** | Full | 16 | 26.1 | 67.7 | 33.6 | 24.9 | **38.1** |
100
+ | **Qwen3-VL-8B** | Full | 16 | 19.0 | 68.7 | 40.6 | 25.2 | **38.3** |
101
+ | **MiniCPM-V4.5-8B** | Full | 16 | 23.8 | 71.1 | 39.7 | 24.9 | **39.9** |
102
+ | **Qwen2.5-VL-7B** | Full | 16 | 21.8 | 60.6 | 38.7 | 22.6 | **35.9** |
103
+ | **LLaVA-OneVision-7B** | Full | 16 | 27.3 | 59.1 | 30.1 | 26.0 | **35.6** |
104
+
105
+ *TR&C = Temporal Reasoning & Chronology, R&T = Referring & Tracking, GC&V = Global Consistency & Verification, ME&N = Multi-Entity Aggregation & Numeracy*
106
+
107
+ **Key Findings:**
108
+
109
+ - 🔍 **Referring & Tracking is easier**: Models perform best on R&T tasks (avg. 66.8%) compared to other categories
110
+ - 🧩 **Multi-evidence is challenging**: Overall accuracy of 38.2% shows substantial room for improvement
111
+ - 📏 **Top performers**: Ovis-2.5-9B (42.1%) and InternVL3.5-14B (41.5%) lead the benchmark
112
+ - ⚖️ **Task variance**: Performance varies significantly across task families, with GC&V and ME&N being most challenging
113
+
114
+ ---
115
+
116
+ ## 🎯 Dataset Features
117
+
118
+ ### High Evidential Requirement (ER)
119
+
120
+ Each question in HERBench is designed to require:
121
+
122
+ 1. **Multiple evidence pieces** (k ≥ 3 frames minimum)
123
+ 2. **Temporal separation** between evidence frames
124
+ 3. **Compositional reasoning** across evidence
125
+ 4. **Integration** of visual information from different moments
126
+
127
+ ### 12 Compositional Task Types
128
+
129
+ #### Temporal Reasoning & Chronology
130
+
131
+ | Task Name | Abilities Tested | Example |
132
+ |-----------|------------------|---------|
133
+ | **[TSO] Temporal Shot Ordering** | Understanding event order, high-level scene transitions, chronological reconstruction using content cues | "The following 4 shots take place in the video: [Shot 1-4 descriptions]. Select the option that correctly reflects the order in which these shots occur in the video." |
134
+ | **[MPDR] Multi-Person Duration Reasoning** | Fine-grained time-span contrasts, interval statistics, comparing appearance durations across individuals | "These people were in the video: [Person 1-3 descriptions]. Who stayed in the frame FOV for the longest time?" |
135
+ | **[ASII] Action Sequence Integrity & Identification** | Micro-level task sequencing, action ordering, temporal understanding of fine-grained activities | "What is the correct temporal order of the 5 narrated events? (e.g., 1. slide coffee capsule -> 2. close lid -> 3. turn off processor -> 4. place orange -> 5. put down sponge)" |
136
+
137
+ #### Referring & Tracking
138
+
139
+ | Task Name | Abilities Tested | Example |
140
+ |-----------|------------------|---------|
141
+ | **[AGBI] Appearance-Grounded Behavior Interactions** | Social and relational cues, identity maintenance across time, interaction recognition | "In the video there is exactly one individual that fits the following description: [Appearance]. Who is accompanying the person as they walk across the frame?" |
142
+ | **[AGAR] Appearance-Grounded Attribute Recognition** | Moment-specific attribute extraction, target tracking, reading contextual details from specific individuals | "In the video there is exactly one individual that fits the following description: [Appearance]. What color is the jacket worn by the individual who remains seated as the main subject walks past?" |
143
+ | **[AGLT] Appearance-Grounded Localization Trajectory** | Global path-level motion reasoning, trajectory tracking, spatial exit/entry point identification | "In the video there is exactly one individual that fits the following description: [Appearance]. How does the person exit the frame at the end of their path?" |
144
+
145
+ #### Global Consistency & Verification
146
+
147
+ | Task Name | Abilities Tested | Example |
148
+ |-----------|------------------|---------|
149
+ | **[FAM] False Action Memory** | Action-level absence detection, exhaustive video-wide verification, distinguishing what did not occur | "Which of the following actions did NOT occur in the video? (A) open drawer (B) open up fridge (C) turn on tap..." |
150
+ | **[SVA] Scene Verification Arrangement** | Shot-level fidelity checking, chronology verification, distinguishing real from fabricated descriptions | "From the correctly described shots, which is the one that appears first in the video? [Multiple shot descriptions provided]" |
151
+ | **[FOM] False Object Memory** | Object-level absence detection, interaction verification, identifying non-interacted objects | "Which object did the camera wearer NOT interact with? (A) Cutting board (B) Sponge (C) Dish soap (D) Garlic presser..." |
152
+
153
+ #### Multi-Entity Aggregation & Numeracy
154
+
155
+ | Task Name | Abilities Tested | Example |
156
+ |-----------|------------------|---------|
157
+ | **[MEGL] Multi-Entities Grounding & Localization** | Set membership verification, identity deduplication, exact-match appearance verification | "Which of the following people appeared in the video (the person description must match exactly): [Person 1-3 descriptions] - A) only 1 and 3" |
158
+ | **[AC] Action Counting** | Event-accumulation across dispersed moments, counting repeated actions, temporal aggregation | "How many times does the action-object pair 'close tap' occur? A) 3 B) 5 C) 7..." |
159
+ | **[RLPC] Region-Localized People Counting** | Region-conditioned identity aggregation, spatial partitioning, counting with spatial constraints | "How many people entered the frame through the top edge? Select the range that includes the correct count." |
160
+
161
+ ### Video Sources
162
+
163
+ Videos are sourced from diverse, high-quality datasets:
164
+
165
+ - **WildTrack** (56 segments): Multi-camera pedestrian tracking scenes
166
+ - **HD-EPIC** (176 videos): First-person egocentric daily activities
167
+ - **PersonPath22** (24 videos): Person tracking scenarios
168
+ - **Movie Trailers** (81 videos): Narrative storytelling content
169
+
170
+ ---
171
+
172
+ ## 📥 Dataset Structure
173
+
174
+ ```
175
+ HERBench/
176
+ ├── data/
177
+ │ ├── herbench_annotations.json # Full: 27,936 questions
178
+ │ ├── herbench_annotations_lite.json # Lite: ~5,600 questions
179
+ │ ├── task_metadata.json # Task descriptions (shared)
180
+ │ ├── video_metadata.json # Video information (shared)
181
+ │ └── README_DATA.md # Data format documentation
182
+ ├── videos/
183
+ │ ├── videos.tar.part.00 # Lite videos start here
184
+ │ ├── videos.tar.part.01 # |
185
+ │ ├── videos.tar.part.02 # | Lite: parts 00-03 (~35GB)
186
+ │ ├── videos.tar.part.03 # |
187
+ │ ├── videos.tar.part.04 # |
188
+ │ ├── ... # | Full: all parts 00-XX (~161GB)
189
+ │ ├── videos.tar.part.XX # |
190
+ │ ├── videos.tar.checksums.txt # SHA256 checksums
191
+ │ └── videos_lite_info.txt # Info about archive structure
192
+ └── herbench_loader.py # Python dataloader (supports both)
193
+ ```
194
+
195
+ **Archive Structure:** Videos are organized so that Lite videos are in the first archive parts (00-03), and Full-only videos are in the remaining parts. This allows efficient downloading of either version without duplication.
196
+
197
+ ---
198
+
199
+ ### Annotation Format
200
+
201
+ Each sample contains:
202
+
203
+ ```json
204
+ {
205
+ "question_id": "HER_001234",
206
+ "video_id": "cam2_segment_4_180s_240s",
207
+ "video_path": "videos/WildTrack/cam2_segment_4_180s_240s.mp4",
208
+ "question": "What is the main activity happening throughout the video?",
209
+ "choices": [
210
+ "A. People walking across the scene",
211
+ "B. People standing and talking",
212
+ "C. People running in the same direction",
213
+ "D. People sitting on benches",
214
+ "E. People cycling through the area"
215
+ ],
216
+ "answer": "A",
217
+ "answer_index": 0,
218
+ "answer_text": "People walking across the scene",
219
+ "task_type": "activity_recognition",
220
+ "metadata": {
221
+ "source_dataset": "WildTrack",
222
+ "duration": 60.0,
223
+ "resolution": "1920x1080",
224
+ "difficulty": "medium"
225
+ }
226
+ }
227
+ ```
228
+
229
+ For detailed format documentation, see [data/README_DATA.md](data/README_DATA.md).
230
+
231
+ ---
232
+
233
+ ## 🚀 Quick Start
234
+
235
+ ### 1. Download the Dataset
236
+
237
+ #### Option A: Using Hugging Face CLI (Recommended)
238
+
239
+ ```bash
240
+ # Install Hugging Face CLI
241
+ pip install huggingface-hub
242
+
243
+ # Download FULL version (27,936 questions, ~161 GB)
244
+ huggingface-cli download DanBenAmi/HERBench --repo-type dataset --local-dir HERBench
245
+
246
+ # Download LITE version only (5,600 questions, ~35 GB)
247
+ huggingface-cli download DanBenAmi/HERBench \
248
+ --include "data/herbench_annotations_lite.json" \
249
+ --include "data/*metadata.json" \
250
+ --include "videos/videos.tar.part.00" \
251
+ --include "videos/videos.tar.part.01" \
252
+ --include "videos/videos.tar.part.02" \
253
+ --include "videos/videos.tar.part.03" \
254
+ --include "videos/videos_lite_info.txt" \
255
+ --include "videos/videos.tar.checksums.txt" \
256
+ --local-dir HERBench
257
+
258
+ # Or download only annotations (no videos)
259
+ huggingface-cli download DanBenAmi/HERBench --include "data/*" --local-dir HERBench
260
+ ```
261
+
262
+ #### Option B: Using Python
263
+
264
+ ```python
265
+ from datasets import load_dataset
266
+
267
+ # Load FULL version (default)
268
+ dataset_full = load_dataset("DanBenAmi/HERBench", name="full")
269
+ print(f"Total questions: {len(dataset_full['test'])}")
270
+
271
+ # Load LITE version
272
+ dataset_lite = load_dataset("DanBenAmi/HERBench", name="lite")
273
+ print(f"Total questions: {len(dataset_lite['test'])}")
274
+ ```
275
+
276
+ ### 2. Extract Videos
277
+
278
+ #### For Full Version:
279
+
280
+ ```bash
281
+ cd HERBench/videos
282
+
283
+ # Concatenate all split archives
284
+ cat videos.tar.part.* > videos_full.tar
285
+
286
+ # Extract videos
287
+ tar -xvf videos_full.tar
288
+
289
+ # Verify checksums (optional)
290
+ sha256sum -c videos.tar.checksums.txt
291
+
292
+ # Clean up tar file (optional)
293
+ rm videos_full.tar
294
+ ```
295
+
296
+ #### For Lite Version:
297
+
298
+ ```bash
299
+ cd HERBench/videos
300
+
301
+ # Concatenate only lite archives (parts 00-03)
302
+ cat videos.tar.part.{00..03} > videos_lite.tar
303
+
304
+ # Extract videos
305
+ tar -xvf videos_lite.tar
306
+
307
+ # Clean up tar file (optional)
308
+ rm videos_lite.tar
309
+ ```
310
+
311
+ > **Note:** The archive is structured so lite videos are in the first parts (00-03). This means if you download the full version, you automatically have the lite videos too!
312
+
313
+ ### 3. Load and Use the Data
314
+
315
+ ```python
316
+ from datasets import load_dataset
317
+
318
+ # Load the dataset (choose version)
319
+ dataset = load_dataset("DanBenAmi/HERBench", name="full") # or name="lite"
320
+
321
+ # Access a sample
322
+ sample = dataset['test'][0]
323
+ print(f"Question: {sample['question']}")
324
+ print(f"Choices: {sample['choices']}")
325
+ print(f"Answer: {sample['answer']}")
326
+ print(f"Video: {sample['video_path']}")
327
+ print(f"Task: {sample['task_type']}")
328
+
329
+ # Filter by task type
330
+ temporal_questions = [
331
+ q for q in dataset['test']
332
+ if q['task_type'] == 'temporal_reasoning'
333
+ ]
334
+ print(f"Temporal reasoning questions: {len(temporal_questions)}")
335
+
336
+ # Compare versions
337
+ dataset_full = load_dataset("DanBenAmi/HERBench", name="full")
338
+ dataset_lite = load_dataset("DanBenAmi/HERBench", name="lite")
339
+ print(f"Full: {len(dataset_full['test'])} questions")
340
+ print(f"Lite: {len(dataset_lite['test'])} questions")
341
+ ```
342
+
343
+ ### 4. Run Evaluation
344
+
345
+ ```bash
346
+ # Clone the evaluation code
347
+ git clone https://github.com/DanBenAmi/HERBench.git
348
+ cd HERBench
349
+
350
+ # Install dependencies
351
+ pip install -r requirements.txt
352
+
353
+ # Run evaluation on your model
354
+ python evaluation/run_evaluation.py \
355
+ model=your_model \
356
+ data_path=./HERBench \
357
+ output_path=./results
358
+ ```
359
+
360
+
361
+ ---
362
+
363
+ ## 📜 Citation
364
+
365
+ If you use HERBench in your research, please cite:
366
+
367
+ ```bibtex
368
+ @article{herbench2025,
369
+ title={HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering},
370
+ author={Ben-Ami, Dan and Serussi, Gabriele and Cohen, Kobi and Baskin, Chaim},
371
+ journal={arXiv preprint arXiv:XXXX.XXXXX},
372
+ year={2025}
373
+ }
374
+ ```
375
+
376
+ ---
377
+
378
+ ## 📄 License
379
+
380
+ This dataset is released under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/).
381
+
382
+ ### Terms of Use
383
+
384
+ **Research Use Only.**
385
+ HERBench is released strictly for non-commercial research and educational purposes.
386
+ The benchmark is constructed using videos originating from existing datasets and platforms, including WildTrack, HD-EPIC, PersonPath22, and publicly available online videos (e.g., YouTube trailers). All rights to the original video content remain with their respective owners and licensors.
387
+
388
+ HERBench does not claim ownership of any underlying video content. The use of such materials is intended solely for academic evaluation and analysis, in accordance with the terms of the respective source datasets and platforms.
389
+
390
+ **Removal upon request.**
391
+ If any content owner or rights holder believes that their material has been included in HERBench in a manner that violates applicable terms or rights, please contact us. Upon notification, we will promptly investigate the request and remove the relevant content as appropriate.
392
+
393
+ ---
394
+
395
+ ## 🙏 Acknowledgments
396
+
397
+ We thank the creators of the original video datasets (WildTrack, HD-EPIC, PersonPath22) for making their data publicly available. We also acknowledge the movie studios for releasing promotional trailers.
398
+
399
+ This work was supported by [Institution/Grant acknowledgments to be added].
400
+
401
+ ---
402
+
403
+ ## 📧 Contact
404
+
405
+ ### Authors
406
+
407
+ - **Dan Ben-Ami** - [email protected]
408
+ - **Gabriele Serussi** - [email protected]
409
+ - **Kobi Cohen**
410
+ - **Chaim Baskin**
411
+
412
+ ### Support
413
+
414
+ - **Issues**: [GitHub Issues](https://github.com/DanBenAmi/HERBench/issues)
415
+ - **Discussions**: [HF Discussions](https://huggingface.co/datasets/DanBenAmi/HERBench/discussions)
416
+ - **Email**: [email protected]
417
+
418
+ ---
419
+
420
+ ## 🔄 Updates
421
+
422
+ - **v1.0.0** (January 2025): Initial release with 27,936 questions across 335 videos
423
+
424
+
425
+ ---
426
+
427
+ ## 🔗 Links
428
+
429
+ - 📄 **Paper**: https://arxiv.org/abs/XXXX.XXXXX *(coming soon)*
430
+ - 💻 **Code**: https://github.com/DanBenAmi/HERBench
431
+ - 🌐 **Project Page**: https://danbenami.github.io/herbench *(coming soon)*
432
+ - 🤗 **Dataset**: https://huggingface.co/datasets/DanBenAmi/HERBench
433
+ - 📊 **Leaderboard**: *(coming soon)*
434
+
435
+ ---
436
+
437
+ <div align="center">
438
+
439
+ **Built with ❤️ for advancing video understanding research**
440
+
441
+ *If you find HERBench useful, please ⭐ star our [GitHub repository](https://github.com/DanBenAmi/HERBench)!*
442
+
443
+ </div>
herbench_loader.py ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ HERBench Dataset Loader for Hugging Face
3
+
4
+ This module provides a Hugging Face datasets loader for HERBench, a benchmark for
5
+ multi-evidence integration in video question answering.
6
+
7
+ Usage:
8
+ # Option 1: Load via Hugging Face datasets library
9
+ from datasets import load_dataset
10
+ dataset = load_dataset("DanBenAmi/HERBench")
11
+ print(dataset['test'][0])
12
+
13
+ # Option 2: Load locally
14
+ from datasets import load_dataset
15
+ dataset = load_dataset("path/to/HERBench/herbench_loader.py")
16
+
17
+ Example:
18
+ >>> from datasets import load_dataset
19
+ >>> dataset = load_dataset("DanBenAmi/HERBench")
20
+ >>> sample = dataset['test'][0]
21
+ >>> print(sample['question'])
22
+ >>> print(sample['choices'])
23
+ >>> print(sample['answer'])
24
+
25
+ For more information, visit:
26
+ - GitHub: https://github.com/DanBenAmi/HERBench
27
+ - Paper: https://arxiv.org/abs/XXXX.XXXXX (coming soon)
28
+ - Project Page: https://danbenami.github.io/herbench (coming soon)
29
+ """
30
+
31
+ import json
32
+ from pathlib import Path
33
+ from typing import Dict, List, Optional
34
+
35
+ import datasets
36
+
37
+
38
+ _DESCRIPTION = """\
39
+ HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering
40
+
41
+ HERBench is a challenging benchmark designed to evaluate vision-language models on
42
+ multi-evidence integration in long videos. Unlike existing benchmarks where questions
43
+ can often be answered from single frames, HERBench enforces a High Evidential Requirement
44
+ (ER) where each question requires aggregating at least k ≥ 3 distinct, temporally
45
+ separated visual cues.
46
+
47
+ Key Features:
48
+ - 27,936 five-way multiple-choice questions (Full) or ~5,600 questions (Lite)
49
+ - 335 unique videos (Full) or ~67 videos (Lite)
50
+ - Average video length of 395 seconds (6.6 minutes)
51
+ - 12 compositional task types covering temporal, spatial, and causal reasoning
52
+ - Mean Minimum Required Frame-Set (MRFS) of 5.49
53
+ - Questions designed to prevent single-frame shortcuts
54
+ - Comprehensive evaluation of multi-evidence reasoning capabilities
55
+
56
+ Available in two versions:
57
+ - Full: 27,936 questions, 335 videos (~161 GB) - Complete benchmark
58
+ - Lite: ~5,600 questions, ~67 videos (~35 GB) - 20% subset for quick prototyping
59
+
60
+ The benchmark includes videos from diverse sources:
61
+ - WildTrack: Multi-camera pedestrian tracking scenes
62
+ - HD-EPIC: First-person egocentric videos of daily activities
63
+ - PersonPath22: Person tracking in various environments
64
+ - Movie Trailers: Narrative story understanding
65
+
66
+ Each question is carefully designed to require:
67
+ 1. Multiple pieces of evidence (k ≥ 3 frames)
68
+ 2. Temporal separation between evidence frames
69
+ 3. Compositional reasoning across evidence
70
+ 4. Integration of visual information from different moments
71
+ """
72
+
73
+ _HOMEPAGE = "https://github.com/DanBenAmi/HERBench"
74
+
75
+ _LICENSE = "CC-BY-NC-SA-4.0"
76
+
77
+ _CITATION = """\
78
+ @article{herbench2025,
79
+ title={HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering},
80
+ author={Ben-Ami, Dan and Serussi, Gabriele and Cohen, Kobi and Baskin, Chaim},
81
+ journal={arXiv preprint arXiv:XXXX.XXXXX},
82
+ year={2025}
83
+ }
84
+ """
85
+
86
+ _VERSION = "1.0.0"
87
+
88
+
89
+ class HERBenchConfig(datasets.BuilderConfig):
90
+ """BuilderConfig for HERBench."""
91
+
92
+ def __init__(self, **kwargs):
93
+ """BuilderConfig for HERBench.
94
+
95
+ Args:
96
+ **kwargs: keyword arguments forwarded to super.
97
+ """
98
+ super(HERBenchConfig, self).__init__(**kwargs)
99
+
100
+
101
+ class HERBench(datasets.GeneratorBasedBuilder):
102
+ """HERBench Dataset: Multi-Evidence Integration in Video QA."""
103
+
104
+ VERSION = datasets.Version(_VERSION)
105
+
106
+ BUILDER_CONFIGS = [
107
+ HERBenchConfig(
108
+ name="full",
109
+ version=VERSION,
110
+ description="Full HERBench dataset with all 27,936 questions and 335 videos (~161GB)",
111
+ ),
112
+ HERBenchConfig(
113
+ name="lite",
114
+ version=VERSION,
115
+ description="HERBench-Lite: 20% subset with ~5,600 questions and ~67 videos (~35GB)",
116
+ ),
117
+ ]
118
+
119
+ DEFAULT_CONFIG_NAME = "full"
120
+
121
+ def _info(self):
122
+ """Specify the datasets.DatasetInfo object."""
123
+ features = datasets.Features({
124
+ "question_id": datasets.Value("string"),
125
+ "video_id": datasets.Value("string"),
126
+ "video_path": datasets.Value("string"),
127
+ "question": datasets.Value("string"),
128
+ "choices": datasets.Sequence(datasets.Value("string")),
129
+ "answer": datasets.Value("string"),
130
+ "answer_index": datasets.Value("int32"),
131
+ "answer_text": datasets.Value("string"),
132
+ "task_type": datasets.Value("string"),
133
+ "metadata": datasets.Features({
134
+ "source_dataset": datasets.Value("string"),
135
+ "duration": datasets.Value("float32"),
136
+ "resolution": datasets.Value("string"),
137
+ "evidence_count": datasets.Value("int32"),
138
+ "difficulty": datasets.Value("string"),
139
+ }),
140
+ })
141
+
142
+ return datasets.DatasetInfo(
143
+ description=_DESCRIPTION,
144
+ features=features,
145
+ homepage=_HOMEPAGE,
146
+ license=_LICENSE,
147
+ citation=_CITATION,
148
+ version=self.VERSION,
149
+ )
150
+
151
+ def _split_generators(self, dl_manager):
152
+ """Return SplitGenerators."""
153
+ # Determine which annotation file to use based on config
154
+ if self.config.name == "lite":
155
+ annotations_file = "data/herbench_annotations_lite.json"
156
+ else:
157
+ annotations_file = "data/herbench_annotations.json"
158
+
159
+ # Download and extract data files
160
+ data_files = dl_manager.download({
161
+ "annotations": annotations_file,
162
+ "task_metadata": "data/task_metadata.json",
163
+ "video_metadata": "data/video_metadata.json",
164
+ })
165
+
166
+ return [
167
+ datasets.SplitGenerator(
168
+ name=datasets.Split.TEST,
169
+ gen_kwargs={
170
+ "annotations_file": data_files["annotations"],
171
+ "task_metadata_file": data_files["task_metadata"],
172
+ "video_metadata_file": data_files["video_metadata"],
173
+ },
174
+ ),
175
+ ]
176
+
177
+ def _generate_examples(self, annotations_file, task_metadata_file, video_metadata_file):
178
+ """Yield examples as (key, example) tuples."""
179
+ # Load annotations
180
+ with open(annotations_file, encoding="utf-8") as f:
181
+ annotations = json.load(f)
182
+
183
+ # Yield each annotation
184
+ for idx, annotation in enumerate(annotations):
185
+ # Ensure metadata exists
186
+ if "metadata" not in annotation:
187
+ annotation["metadata"] = {
188
+ "source_dataset": "unknown",
189
+ "duration": 0.0,
190
+ "resolution": "unknown",
191
+ "evidence_count": 0,
192
+ "difficulty": "unknown"
193
+ }
194
+ else:
195
+ # Ensure required metadata fields exist
196
+ metadata = annotation["metadata"]
197
+ if "source_dataset" not in metadata:
198
+ metadata["source_dataset"] = "unknown"
199
+ if "duration" not in metadata:
200
+ metadata["duration"] = 0.0
201
+ if "resolution" not in metadata:
202
+ metadata["resolution"] = "unknown"
203
+ if "evidence_count" not in metadata:
204
+ metadata["evidence_count"] = 0
205
+ if "difficulty" not in metadata:
206
+ metadata["difficulty"] = "unknown"
207
+
208
+ yield idx, {
209
+ "question_id": annotation.get("question_id", f"HER_{idx:06d}"),
210
+ "video_id": annotation.get("video_id", ""),
211
+ "video_path": annotation.get("video_path", ""),
212
+ "question": annotation.get("question", ""),
213
+ "choices": annotation.get("choices", []),
214
+ "answer": annotation.get("answer", ""),
215
+ "answer_index": int(annotation.get("answer_index", 0)),
216
+ "answer_text": annotation.get("answer_text", ""),
217
+ "task_type": annotation.get("task_type", "unknown"),
218
+ "metadata": annotation["metadata"],
219
+ }
220
+
221
+
222
+ # Example usage and helper functions
223
+ def load_herbench(cache_dir: Optional[str] = None) -> datasets.DatasetDict:
224
+ """
225
+ Load HERBench dataset using Hugging Face datasets library.
226
+
227
+ Args:
228
+ cache_dir: Optional directory to cache the dataset.
229
+
230
+ Returns:
231
+ DatasetDict with 'test' split containing all questions.
232
+
233
+ Example:
234
+ >>> dataset = load_herbench()
235
+ >>> print(f"Total questions: {len(dataset['test'])}")
236
+ >>> print(dataset['test'][0])
237
+ """
238
+ return datasets.load_dataset(
239
+ "DanBenAmi/HERBench",
240
+ cache_dir=cache_dir
241
+ )
242
+
243
+
244
+ def get_questions_by_task(dataset, task_type: str) -> List[Dict]:
245
+ """
246
+ Filter questions by task type.
247
+
248
+ Args:
249
+ dataset: HERBench dataset or test split.
250
+ task_type: Task type to filter (e.g., 'temporal_reasoning').
251
+
252
+ Returns:
253
+ List of questions matching the task type.
254
+
255
+ Example:
256
+ >>> dataset = load_herbench()
257
+ >>> temporal_qs = get_questions_by_task(dataset['test'], 'temporal_reasoning')
258
+ >>> print(f"Temporal reasoning questions: {len(temporal_qs)}")
259
+ """
260
+ if isinstance(dataset, datasets.DatasetDict):
261
+ dataset = dataset['test']
262
+
263
+ return [q for q in dataset if q['task_type'] == task_type]
264
+
265
+
266
+ def get_questions_by_video(dataset, video_id: str) -> List[Dict]:
267
+ """
268
+ Get all questions for a specific video.
269
+
270
+ Args:
271
+ dataset: HERBench dataset or test split.
272
+ video_id: Video identifier.
273
+
274
+ Returns:
275
+ List of questions for the specified video.
276
+
277
+ Example:
278
+ >>> dataset = load_herbench()
279
+ >>> video_qs = get_questions_by_video(dataset['test'], 'cam2_segment_4_180s_240s')
280
+ >>> print(f"Questions for video: {len(video_qs)}")
281
+ """
282
+ if isinstance(dataset, datasets.DatasetDict):
283
+ dataset = dataset['test']
284
+
285
+ return [q for q in dataset if q['video_id'] == video_id]
286
+
287
+
288
+ def print_sample(sample: Dict) -> None:
289
+ """
290
+ Pretty print a sample from the dataset.
291
+
292
+ Args:
293
+ sample: A single sample from HERBench.
294
+
295
+ Example:
296
+ >>> dataset = load_herbench()
297
+ >>> print_sample(dataset['test'][0])
298
+ """
299
+ duration = sample['metadata'].get('duration', 0.0)
300
+ print(f"Question ID: {sample['question_id']}")
301
+ print(f"Video: {sample['video_id']} ({duration:.1f}s)")
302
+ print(f"Resolution: {sample['metadata'].get('resolution', 'unknown')}")
303
+ print(f"Task: {sample['task_type']}")
304
+ print(f"\nQuestion: {sample['question']}")
305
+ print(f"\nChoices:")
306
+ for i, choice in enumerate(sample['choices']):
307
+ marker = "→" if i == sample['answer_index'] else " "
308
+ print(f" {marker} {choice}")
309
+ print(f"\nCorrect Answer: {sample['answer']} (index: {sample['answer_index']})")
310
+ if sample.get('answer_text'):
311
+ print(f"Answer Text: {sample['answer_text']}")
312
+ print(f"Source: {sample['metadata']['source_dataset']}")
313
+ print("-" * 60)
314
+
315
+
316
+ if __name__ == "__main__":
317
+ # Example usage when run as script
318
+ print("Loading HERBench dataset...")
319
+ dataset = load_herbench()
320
+
321
+ print(f"\nDataset loaded successfully!")
322
+ print(f"Total questions: {len(dataset['test'])}")
323
+
324
+ print(f"\nFirst sample:")
325
+ print_sample(dataset['test'][0])
326
+
327
+ # Show task distribution
328
+ from collections import Counter
329
+ task_counts = Counter(q['task_type'] for q in dataset['test'])
330
+
331
+ print(f"\nTask distribution:")
332
+ for task, count in task_counts.most_common():
333
+ print(f" {task}: {count}")