Datasets:
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
video-understanding
multi-evidence-reasoning
long-video
temporal-reasoning
spatial-reasoning
video-qa
License:
Add HERBench.py (capitalized) for HF dataset loader
Browse filesHuggingFace expects the loading script filename to match the dataset name.
Since the repo is DanBenAmi/HERBench, the script should be HERBench.py.
Keeping both herbench.py (lowercase) and HERBench.py (capitalized) for
compatibility.
- HERBench.py +194 -0
HERBench.py
ADDED
|
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
HERBench Hugging Face Datasets loading script.
|
| 3 |
+
|
| 4 |
+
Why this file exists:
|
| 5 |
+
- Hugging Face Dataset Viewer auto-parses JSON files if no loading script is detected.
|
| 6 |
+
- Auto-parsing uses pandas->pyarrow inference and can fail when nested fields (like `metadata`)
|
| 7 |
+
have inconsistent shapes across rows (common in multi-task benchmarks).
|
| 8 |
+
- By providing a proper datasets loading script named after the repo (`herbench.py` for HERBench),
|
| 9 |
+
the Hub will use this builder instead, with an explicit, stable schema.
|
| 10 |
+
|
| 11 |
+
This script ensures streaming compatibility and robust schema handling for the Dataset Viewer.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
from __future__ import annotations
|
| 15 |
+
|
| 16 |
+
import json
|
| 17 |
+
from typing import Any, Dict, Iterator
|
| 18 |
+
|
| 19 |
+
import datasets
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
_DESCRIPTION = """\
|
| 23 |
+
HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering.
|
| 24 |
+
|
| 25 |
+
This dataset contains multiple-choice questions grounded in long videos and designed to
|
| 26 |
+
require integration of multiple temporally separated cues (high evidential requirement).
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
_HOMEPAGE = "https://github.com/DanBenAmi/HERBench"
|
| 30 |
+
_LICENSE = "CC-BY-NC-SA-4.0"
|
| 31 |
+
|
| 32 |
+
_CITATION = """\
|
| 33 |
+
@article{herbench2025,
|
| 34 |
+
title={HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering},
|
| 35 |
+
author={Ben-Ami, Dan and Serussi, Gabriele and Cohen, Kobi and Baskin, Chaim},
|
| 36 |
+
journal={arXiv preprint arXiv:XXXX.XXXXX},
|
| 37 |
+
year={2025}
|
| 38 |
+
}
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
_VERSION = "1.0.3"
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class HERBenchConfig(datasets.BuilderConfig):
|
| 45 |
+
"""BuilderConfig for HERBench."""
|
| 46 |
+
pass
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class HERBench(datasets.GeneratorBasedBuilder):
|
| 50 |
+
"""HERBench Dataset: Multi-Evidence Integration in Video QA."""
|
| 51 |
+
|
| 52 |
+
VERSION = datasets.Version(_VERSION)
|
| 53 |
+
|
| 54 |
+
BUILDER_CONFIGS = [
|
| 55 |
+
HERBenchConfig(
|
| 56 |
+
name="full",
|
| 57 |
+
version=VERSION,
|
| 58 |
+
description="Full HERBench dataset (27,936 questions; 335 videos; ~161GB).",
|
| 59 |
+
),
|
| 60 |
+
HERBenchConfig(
|
| 61 |
+
name="lite",
|
| 62 |
+
version=VERSION,
|
| 63 |
+
description="HERBench-Lite subset (~5,600 questions; ~67 videos; ~35GB for quick prototyping).",
|
| 64 |
+
),
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
# Make the Hub viewer default to the smaller config (faster and less error-prone).
|
| 68 |
+
DEFAULT_CONFIG_NAME = "lite"
|
| 69 |
+
|
| 70 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 71 |
+
"""
|
| 72 |
+
Define the dataset schema with strict, stable types for all fields.
|
| 73 |
+
|
| 74 |
+
IMPORTANT: Keep features stable across all rows.
|
| 75 |
+
`metadata` in the raw JSON varies by task (different keys / nested lists).
|
| 76 |
+
To keep the schema consistent for Arrow + Dataset Viewer:
|
| 77 |
+
- Expose common metadata fields as flat, typed columns
|
| 78 |
+
- Store the full raw metadata dict as a JSON string in `metadata_json`
|
| 79 |
+
"""
|
| 80 |
+
features = datasets.Features(
|
| 81 |
+
{
|
| 82 |
+
# Core fields
|
| 83 |
+
"question_id": datasets.Value("string"),
|
| 84 |
+
"video_id": datasets.Value("string"),
|
| 85 |
+
"video_path": datasets.Value("string"),
|
| 86 |
+
"question": datasets.Value("string"),
|
| 87 |
+
"choices": datasets.Sequence(datasets.Value("string")),
|
| 88 |
+
"answer": datasets.Value("string"),
|
| 89 |
+
"answer_index": datasets.Value("int32"),
|
| 90 |
+
"answer_text": datasets.Value("string"),
|
| 91 |
+
"task_type": datasets.Value("string"),
|
| 92 |
+
|
| 93 |
+
# Common metadata fields (flat, typed)
|
| 94 |
+
"source_dataset": datasets.Value("string"),
|
| 95 |
+
"duration": datasets.Value("float32"),
|
| 96 |
+
"resolution": datasets.Value("string"),
|
| 97 |
+
|
| 98 |
+
# Full raw metadata as JSON string (stable schema)
|
| 99 |
+
"metadata_json": datasets.Value("string"),
|
| 100 |
+
}
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
return datasets.DatasetInfo(
|
| 104 |
+
description=_DESCRIPTION,
|
| 105 |
+
features=features,
|
| 106 |
+
homepage=_HOMEPAGE,
|
| 107 |
+
license=_LICENSE,
|
| 108 |
+
citation=_CITATION,
|
| 109 |
+
version=self.VERSION,
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
| 113 |
+
"""
|
| 114 |
+
Define data splits. Downloads only the JSON annotations for streaming efficiency.
|
| 115 |
+
Videos are referenced by path but not downloaded during viewer loading.
|
| 116 |
+
"""
|
| 117 |
+
if self.config.name == "lite":
|
| 118 |
+
annotations_file = "data/herbench_annotations_lite.json"
|
| 119 |
+
else:
|
| 120 |
+
annotations_file = "data/herbench_annotations.json"
|
| 121 |
+
|
| 122 |
+
# Download only annotations (not videos) for Dataset Viewer efficiency
|
| 123 |
+
data_files = dl_manager.download(
|
| 124 |
+
{
|
| 125 |
+
"annotations": annotations_file,
|
| 126 |
+
}
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
return [
|
| 130 |
+
datasets.SplitGenerator(
|
| 131 |
+
name=datasets.Split.TEST,
|
| 132 |
+
gen_kwargs={"annotations_file": data_files["annotations"]},
|
| 133 |
+
)
|
| 134 |
+
]
|
| 135 |
+
|
| 136 |
+
def _generate_examples(self, annotations_file: str) -> Iterator[tuple[int, Dict[str, Any]]]:
|
| 137 |
+
"""
|
| 138 |
+
Yield examples from the annotations file with robust type handling.
|
| 139 |
+
|
| 140 |
+
This method ensures:
|
| 141 |
+
- Streaming compatibility (processes one example at a time)
|
| 142 |
+
- Stable schema (all fields have consistent types)
|
| 143 |
+
- Defensive parsing (handles missing/malformed fields gracefully)
|
| 144 |
+
"""
|
| 145 |
+
with open(annotations_file, encoding="utf-8") as f:
|
| 146 |
+
annotations = json.load(f)
|
| 147 |
+
|
| 148 |
+
for idx, ann in enumerate(annotations):
|
| 149 |
+
# Extract and normalize metadata
|
| 150 |
+
md = ann.get("metadata")
|
| 151 |
+
if md is None or not isinstance(md, dict):
|
| 152 |
+
# Defensive: ensure metadata is always a dict
|
| 153 |
+
md = {}
|
| 154 |
+
|
| 155 |
+
# Extract common metadata fields with defaults
|
| 156 |
+
source_dataset = md.get("source_dataset", "unknown")
|
| 157 |
+
duration = md.get("duration", 0.0)
|
| 158 |
+
resolution = md.get("resolution", "unknown")
|
| 159 |
+
|
| 160 |
+
# Normalize numeric types to avoid Arrow type inference issues
|
| 161 |
+
try:
|
| 162 |
+
duration_f = float(duration) if duration is not None else 0.0
|
| 163 |
+
except (ValueError, TypeError):
|
| 164 |
+
duration_f = 0.0
|
| 165 |
+
|
| 166 |
+
# Normalize choices field
|
| 167 |
+
choices = ann.get("choices", [])
|
| 168 |
+
if not isinstance(choices, list):
|
| 169 |
+
choices = []
|
| 170 |
+
|
| 171 |
+
# Normalize answer_index
|
| 172 |
+
answer_index = ann.get("answer_index", 0)
|
| 173 |
+
try:
|
| 174 |
+
answer_index = int(answer_index) if answer_index is not None else 0
|
| 175 |
+
except (ValueError, TypeError):
|
| 176 |
+
answer_index = 0
|
| 177 |
+
|
| 178 |
+
yield idx, {
|
| 179 |
+
"question_id": str(ann.get("question_id", f"HER_{idx:06d}")),
|
| 180 |
+
"video_id": str(ann.get("video_id", "")),
|
| 181 |
+
"video_path": str(ann.get("video_path", "")),
|
| 182 |
+
"question": str(ann.get("question", "")),
|
| 183 |
+
"choices": [str(x) for x in choices],
|
| 184 |
+
"answer": str(ann.get("answer", "")),
|
| 185 |
+
"answer_index": answer_index,
|
| 186 |
+
"answer_text": str(ann.get("answer_text", "")),
|
| 187 |
+
"task_type": str(ann.get("task_type", "unknown")),
|
| 188 |
+
"source_dataset": str(source_dataset),
|
| 189 |
+
"duration": duration_f,
|
| 190 |
+
"resolution": str(resolution),
|
| 191 |
+
"metadata_json": json.dumps(md, ensure_ascii=False),
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
|