--- dataset_info: features: - name: id dtype: int64 - name: input list: - name: type dtype: string - name: content dtype: string - name: output struct: - name: veo3 list: string - name: framepack list: string - name: framepack_seleted_video dtype: string - name: hunyuan list: string - name: hunyuan_seleted_video dtype: string - name: wan2.2-14b list: string - name: wan2.2-14b_seleted_video dtype: string - name: wan2.2-5b list: string - name: wan2.2-5b_seleted_video dtype: string splits: - name: train num_bytes: 98746 num_examples: 99 download_size: 36034 dataset_size: 98746 configs: - config_name: default data_files: - split: train path: data/train-* --- # Visual-Intelligence ## 🔗 Links - [💾 Github Repo](https://github.com/Entroplay/Visual-Intelligence) - [🤗 HF Dataset](https://huggingface.co/datasets/Entroplay/Visual-Intelligence) - [📑 Blog](https://entroplay.ai/research/video-intelligence) ## 📖 Dataset Introduction ### Dataset Schema - **id**: Unique sample identifier. - **input**: Ordered list describing the input context. - **type**: Either "image" or "text". - **content**: For "image", a relative path to the first-frame image. For "text", the prompt text. - **output**: Generated candidates and final selections by model. - **veo3**: Relative paths to videos generated by the VEO3 pipeline. - **framepack**: Relative paths to videos generated by FramePack across multiple runs. - **hunyuan**: Relative paths to videos generated by Hunyuan across multiple runs. - **wan2.2-5b**: Relative paths to videos generated by Wan-2.2-5B across multiple runs. - **wan2.2-14b**: Relative paths to videos generated by Wan-2.2-14B across multiple runs. - **framepack_seleted_video**: Selected best video among FramePack candidates. - **hunyuan_seleted_video**: Selected best video among Hunyuan candidates. - **wan2.2-5b_seleted_video**: Selected best video among Wan 2.2 5B candidates. - **wan2.2-14b_seleted_video**: Selected best video among Wan 2.2 14B candidates. ### Data Format: ```json { "id": 1, "input": [ { "type": "image", "content": "thumbnails/mp4/keypoint_localization.jpg" }, { "type": "text", "content": "Add a bright blue dot at the tip of the branch on which the macaw is sitting. ..." } ], "output": { "veo3": ["videos/mp4/keypoint_localization.mp4"], "framepack": [ "videos/1_framepack_1.mp4", "videos/1_framepack_2.mp4" ], "hunyuan": [ "videos/1_hunyuan_1.mp4", "videos/1_hunyuan_2.mp4" ], "wan2.2-5b": [ "videos/1_wan2.2-5b_1.mp4", "videos/1_wan2.2-5b_2.mp4" ], "wan2.2-14b": [ "videos/1_wan2.2-14b_1.mp4", "videos/1_wan2.2-14b_2.mp4" ], "framepack_seleted_video": "videos/1_framepack_1.mp4", "hunyuan_seleted_video": "videos/1_hunyuan_1.mp4", "wan2.2-5b_seleted_video": "videos/1_wan2.2-5b_1.mp4", "wan2.2-14b_seleted_video": "videos/1_wan2.2-14b_1.mp4" } } ``` ## 🚀 About project Google' Veo 3 shows extreme promise in visual intelligence, demonstrating strong visual commonsense and reasoning in visual generation. We aim to construct a fully open-source evaluation suite to measure current progress in video generative intelligence across various dimensions among several state-of-the-art proprietary and open-source models.