File size: 8,238 Bytes
5fed0fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# Contributing to Frontier-CS
Frontier-CS is currently an **invitation-only** project for new problems.
Please create a GitHub pull request (PR) with your proposed problem following the guidelines below. After your PR is reviewed and merged, please send any hidden test data and reference solutions to the contact email provided at the end of this document.
- [Algorithmic Problems](#algorithmic-problems)
- [Problem Submission Process](#problem-submission-process)
- [Problem Structure](#problem-structure)
- [Required Files](#required-files)
- [Hidden Test Data and Human Reference](#hidden-test-data-and-human-reference)
- [Research Problems](#research-problems)
- [Problem Submission Process](#research-problem-submission-process)
- [Problem Structure](#research-problem-structure)
- [Evaluation Flow](#evaluation-flow)
- [Step by Step](#step-by-step)
- [Problem Hierarchy](#problem-hierarchy-categories-and-variants)
- [Contact](#contact)
## Algorithmic Problems
### Problem Submission Process
1. **Invitation Required**: Only invited contributors can submit algorithmic problems
2. **Internal Review**: All problems undergo internal review by the Frontier-CS team
3. **Problem Numbering**: After approval, problems are assigned a unique numerical ID
4. **Structure Compliance**: Problems must follow the required directory structure
### Problem Structure
Each algorithmic problem must be organized in the following directory structure:
```
algorithmic/problems/{problem_id}/
βββ config.yaml # Problem configuration (time limit, memory limit, checker)
βββ statement.txt # Problem description and requirements
βββ chk.cc or interactor.cc (for interactive problems) # Evaluator
βββ testdata/ # Test cases
βββ 1.in # Sample input
βββ 1.ans # Hidden evaluation data used by the evaluator, e.g., reference score.
βββ 2.in
βββ 2.ans
βββ ...
```
### Required Files
#### config.yaml
Defines the problem configuration:
```yaml
type: default # Problem type
time: 1s # Time limit (e.g., 1s, 2s, 5s)
memory: 1024m # Memory limit (e.g., 512m, 1024m, 2048m)
checker: chk.cc # Custom checker file (optional)
subtasks:
- score: 100 # Total score for this subtask
n_cases: 10 # Number of test cases (= 1 for public version)
```
#### statement.txt
The problem statement should include:
- **Problem Description**: Clear description of the problem
- **Input Format**: Detailed specification of input format
- **Output Format**: Detailed specification of output format
- **Scoring**: Explanation of how solutions are scored
- **Time Limit**: Execution time limit
- **Memory Limit**: Memory usage limit
- **Sample Input/Output**: At least one example with explanation
#### chk.cc / interactor.cc (for interactive problems)
*Support partial score*
the current judge returns the partial score by parsing the message returned by `testlib.h`, making sure your `quitp` follows the following format:
```cpp
quitp(score, "Ratio: %.9f [additional message str]", score, ...);
```
To support raw score, use:
```cpp
quitp(score_ratio, "Value: %lld. Ratio: %.4f, RatioUnbounded: %.4f", score, score_ratio, unbounded_ratio);
```
#### testdata/
Test cases with inputs (`.in`) and expected outputs (`.ans`):
- `1.in`, `1.ans`: First test case
- `2.in`, `2.ans`: Second test case
- etc.
### Hidden Test Data and Human Reference
For security and evaluation integrity:
- **Hidden test data** (not in public repository)
- **Human reference solutions** (baseline implementations)
Please send these materials to: [email protected] once your PR is merged.
Include in your email:
- Problem ID (if assigned) or proposed problem name
- Complete test data set (all `.in` and `.ans` files)
- Reference solution(s) with explanation
- Any additional notes on test case design
## Research Problems
Research problems focus on systems optimization, ML systems, databases, compilers, and security challenges.
### Research Problem Submission Process
1. **Invitation Required**: Only invited contributors can submit research problems
2. **Internal Review**: Problems undergo internal review for quality and feasibility
3. **Tag Assignment**: Problems are assigned appropriate category tags (os, hpc, ai, db, pl, security)
### Research Problem Structure
Each research problem follows a standardized interface:
```
research/{problem_name}/
βββ config.yaml # Dependencies, datasets, runtime config
βββ set_up_env.sh # Environment setup script
βββ evaluate.sh # Evaluation entry point
βββ evaluator.py # Scoring logic
βββ readme # Problem description
βββ resources/ # Problem-specific code/data
```
### Solution Interface
Solutions implement a `Solution` class in `solution.py`:
```python
class Solution:
def __init__(self):
pass
def solve(self, *args):
# Returns: solution output (format varies by problem)
pass
```
### Evaluation Flow
```
config.yaml β set_up_env.sh β solve.sh β evaluate.sh β evaluator.py β score (0-100)
```
### Step by Step
#### 1. Create Problem Directory
```bash
mkdir -p research/{problem_name}/resources
```
#### 2. Create `config.yaml`
```yaml
tag: hpc # Category: os, hpc, ai, db, pl, security
dependencies:
uv_project: resources # Optional: uv project in resources/
datasets: [] # Optional: dataset URLs
runtime:
timeout_seconds: 1800 # Evaluation timeout
requires_gpu: true # GPU requirement
resources: # SkyPilot resources
accelerators: "L4:1"
cpus: "8+"
memory: "32+"
environment: "CUDA 12.2, Python 3.11, PyTorch 2.0+"
```
#### 3. Create Evaluation Scripts
**set_up_env.sh**: Prepare environment
```bash
#!/bin/bash
# Install dependencies, download data, etc.
```
**evaluate.sh**: Run evaluation
```bash
#!/bin/bash
python evaluator.py
```
**evaluator.py**: Score the solution (last line must be numeric score)
```python
# ... evaluation logic ...
print(score) # Must be last line!
```
#### 4. Register the Problem
Add to `research/problems.txt`:
```
research/{problem_name}
```
### Problem Hierarchy: Categories and Variants
Research problems follow a hierarchical structure:
```
Problem (e.g., gemm_optimization, poc_generation)
βββ Category (e.g., squares, heap_buffer_overflow)
βββ Variant (e.g., arvo_21000)
```
| Level | Evaluation | Reporting |
|-------|------------|-----------|
| **Category** | β | Scores aggregated for leaderboard |
| **Variant** | Evaluated independently | Contributes to category score |
#### Example: Simple Variants
```
research/gemm_optimization/
βββ squares/ # Variant (category = squares)
β βββ config.yaml
β βββ readme
β βββ evaluator.py
βββ rectangles/ # Variant (category = rectangles)
βββ transformerish/ # Variant (category = transformerish)
```
#### Example: Nested Variants
For problems with many variants per category:
```
research/poc_generation/
βββ heap_buffer_overflow/ # Category
β βββ config.yaml # Category-level config (tag only)
β βββ arvo_21000/ # Variant
β β βββ config.yaml
β β βββ readme
β β βββ evaluator.py
β βββ arvo_47101/ # Variant
βββ stack_buffer_overflow/ # Category
βββ ...
```
#### Registering Problems
Add each **variant** (not category) to `problems.txt`:
```
research/gemm_optimization/squares
research/gemm_optimization/rectangles
research/poc_generation/heap_buffer_overflow/arvo_21000
research/poc_generation/heap_buffer_overflow/arvo_47101
```
## Contact
For questions, submissions, or to request an invitation:
**Email**: [email protected] (general \& algorithmic problems), [email protected] (research problems)
Please include:
- Your name and affiliation
- Area of expertise
- Type of contribution (algorithmic/research problem)
- Brief description of your proposed contribution
|