File size: 5,076 Bytes
5fed0fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Submitting Your Results

We welcome submissions from all models and agent frameworks. To have your results included in our leaderboard, please follow the instructions below.

## Algorithmic Problems

We currently release **1 -- 3 public test case** per problem for local testing and debugging. Full evaluation (with all test cases) is performed on our servers.

### What to Submit

1. **Solution files**: `{problem_id}_{model_name}_solution.cpp` for each problem
2. **Model/Agent info**: Name and version of the model or agent framework used
3. **Generation method**: Brief description of how solutions were generated (e.g., one-shot, multi-turn, with/without feedback)

### Submission Format

Organize your solutions as:
```
submissions/
β”œβ”€β”€ 1_gpt4_solution.cpp
β”œβ”€β”€ 2_gpt4_solution.cpp
β”œβ”€β”€ ...
└── metadata.json
```

`metadata.json`:
```json
{
  "model": "gpt-4o",
  "agent_framework": "custom",
  "generation_method": "one-shot",
  "date": "2025-01-15",
  "notes": "Optional additional notes"
}
```

## Research Problems

Research problems require a `solution.py` file implementing the `Solution` class interface.

### Problem Structure

Research problems follow a hierarchical structure:

```
Problem (e.g., gemm_optimization, poc_generation)
└── Category (e.g., squares, heap_buffer_overflow)
    └── Variant (e.g., arvo_21000)
```

| Level | Example | Description |
|-------|---------|-------------|
| **Problem** | `gemm_optimization` | Top-level problem domain |
| **Category** | `gemm_optimization/squares` | Scores are **aggregated** at this level for leaderboard reporting |
| **Variant** | `poc_generation/heap_buffer_overflow/arvo_21000` | Each variant is **evaluated independently** with its own README |

**Key distinction:**
- **Evaluation**: Each variant runs independently and produces its own score
- **Reporting**: Scores are aggregated by category for the leaderboard (e.g., all `heap_buffer_overflow` variants β†’ one score)

> Note: Some problems have only one level (e.g., `flash_attn`), which functions as both category and variant.

### Problem ID Format

Each variant has a unique **Problem ID** based on its path under `research/`.

The full list of all evaluatable variants is in [`research/problems.txt`](research/problems.txt) (109 variants total, aggregated into ~50 categories for reporting).

| Type | Example Path | Problem ID |
|------|-------------|------------|
| Single problem | `research/flash_attn` | `flash_attn` |
| Problem with variants | `research/gemm_optimization/squares` | `gemm_optimization/squares` |
| Nested variants | `research/poc_generation/heap_buffer_overflow/arvo_21000` | `poc_generation/heap_buffer_overflow/arvo_21000` |

### What to Submit

1. **Solution files**: `solution.py` for each problem, placed in a directory matching the Problem ID
2. **Model/Agent info**: Name and version of the model or agent framework used
3. **Local evaluation results** (optional but recommended): Score from running the evaluator locally

### Submission Format

Your submission zip should mirror the Problem ID directory structure:

```
submission.zip
β”œβ”€β”€ flash_attn/
β”‚   └── solution.py
β”œβ”€β”€ gemm_optimization/
β”‚   └── squares/
β”‚       └── solution.py
β”œβ”€β”€ cant_be_late/
β”‚   └── high_availability_loose_deadline/
β”‚       └── solution.py
β”œβ”€β”€ poc_generation/
β”‚   └── heap_buffer_overflow/
β”‚       └── arvo_21000/
β”‚           └── solution.py
└── metadata.json
```

**Important**: The directory structure must exactly match the Problem ID. For example:
- `flash_attn/solution.py`
- `gemm_optimization/squares/solution.py`

Each `solution.py` must implement:
```python
class Solution:
    def __init__(self):
        pass

    def solve(self, *args):
        # Returns: solution output (format varies by problem)
        pass
```

### metadata.json

```json
{
  "model": "gpt-4o",
  "agent_framework": "custom",
  "generation_method": "one-shot",
  "date": "2025-01-15",
  "problems_solved": [
    "flash_attn",
    "gemm_optimization/squares",
    "cant_be_late/high_availability_loose_deadline"
  ],
  "notes": "Optional additional notes"
}
```

### Running Local Evaluation

Before submitting, you can verify your solutions locally:

```bash
# Evaluate a single solution
frontier-eval flash_attn solution.py

# Batch evaluation with progress tracking
frontier-eval batch --pairs-file pairs.txt --results-dir results/

# Batch evaluation with SkyPilot (cloud)
frontier-eval batch --pairs-file pairs.txt --skypilot --max-concurrent 4
```

## How to Submit

Send your submission to:
- **Email**: [email protected] or [email protected]

Please include:
1. A zip/tar archive of your solutions following the format above
2. `metadata.json` with model and method information
3. (Optional) Local evaluation results if you ran them

## Leaderboard

Accepted submissions will be evaluated on our full test suite and results will be published on the [Frontier-CS Leaderboard](https://frontier-cs.org).