from abc import ABC, abstractmethod from typing import Any, Tuple, Dict from openai import OpenAI, APITimeoutError import google.generativeai as genai import os from dotenv import load_dotenv import anthropic from anthropic import Anthropic, APITimeoutError as AnthropicAPITimeoutError from google import genai from google.genai import types load_dotenv() class LLMInterface(ABC): """ Abstract base class for integrating Large Language Models (LLMs) into a competitive programming context. """ def __init__(self): """ Initialize the LLMInterface with a predefined prompt for generating competitive programming solutions. """ self.prompt = """ You are a competitive programmer. You will be given a problem statement, please implement a solution in C++. The execution time and memory limit are also stated in the statement so be aware of the complexity of the program. Please wrap the code in ```cpp and ``` so that it is properly formatted. Your response should ONLY contain the C++ code, with no additional explanation or text. """ @abstractmethod def call_llm(self, user_prompt: str) -> Tuple[str, Any]: """ Abstract method to interact with the LLM. """ pass def generate_solution(self, problem_statement: str) -> Tuple[str, Any]: """ Generates a solution to a given competitive programming problem using the LLM. """ user_prompt = self.prompt + problem_statement response, meta = self.call_llm(user_prompt) return response, meta class GPT(LLMInterface): """ Concrete implementation of LLMInterface using OpenAI's GPT-4o model. """ def __init__(self): """ Initializes the ExampleLLM class by creating an instance of the OpenAI client. """ super().__init__() api_key = os.getenv("OPENAI_API_KEY") self.client = OpenAI(api_key=api_key) self.name = 'gpt' def call_llm(self, user_prompt: str) -> Tuple[str, Any]: """ Sends the user prompt to OpenAI's GPT-5 model and retrieves the solution. Args: user_prompt (str): The complete prompt including the initial context and problem statement. Returns: Tuple[str, Any]: The LLM's response and metadata about the completion. """ try: completion = self.client.chat.completions.create( model="gpt-5", messages=[{"role": "user", "content": user_prompt}], reasoning_effort="high", timeout=1200.0 ) return completion.choices[0].message.content, str(completion) except APITimeoutError as e: print(f"OpenAI API request timed out: {e}") return "", str(e) except Exception as e: print(f"An unexpected error occurred while calling the OpenAI API: {e}") return "", str(e) class Gemini(LLMInterface): """ Concrete implementation of LLMInterface using Google's Gemini 2.5 Pro model. Attributes: model (genai.GenerativeModel): Instance for interacting with the Gemini API. """ def __init__(self): """ Initializes the GeminiLLM class by configuring the API key and creating an instance of the Gemini model. """ super().__init__() try: api_key = os.getenv("GOOGLE_API_KEY") if not api_key: raise ValueError("GOOGLE_API_KEY not found in environment variables.") genai.configure(api_key=api_key) # Using a powerful and recent model. You can change this to other available models. self.model = genai.GenerativeModel('gemini-2.5-pro') except Exception as e: print(f"Error during Gemini initialization: {e}") self.model = None self.name = 'gemini' def call_llm(self, user_prompt: str) -> Tuple[str, Any]: """ Sends the user prompt to the Gemini model and retrieves the solution. """ if not self.model: return "Error: Model not initialized.", None try: # Add the request_options parameter to set a timeout # Timeout is in seconds. 600 seconds = 10 minutes. response = self.model.generate_content( user_prompt, request_options={"timeout": 600} ) solution_text = response.text return solution_text, response except Exception as e: print(f"An error occurred while calling the Gemini API: {e}") return f"Error: {e}", None class Claude(LLMInterface): """ Concrete implementation of LLMInterface using Anthropic's Claude models. """ def __init__(self): """ Initializes the Claude class by creating an instance of the Anthropic client. """ super().__init__() api_key = os.getenv("ANTHROPIC_API_KEY") self.client = Anthropic(api_key=api_key, timeout=600.0) self.name = 'claude' def call_llm(self, user_prompt: str) -> Tuple[str, Any]: """ Sends the combined user prompt to Anthropic's model. Args: user_prompt (str): The complete prompt (system + problem). Returns: Tuple[str, Any]: The LLM's response and metadata. """ try: # **FIX:** Removed the 'system' parameter. # The 'user_prompt' now contains the full concatenated prompt. completion = self.client.messages.create( model="claude-sonnet-4-20250514", max_tokens=32000, messages=[ {"role": "user", "content": user_prompt} ], thinking={ "type": "enabled", "budget_tokens": 20000 } ) # --- THIS IS THE CORRECTED LOGIC --- # Instead of assuming content[0].text, we loop through all content blocks # and build the final text string from "text" blocks only. final_text = "" if hasattr(completion, 'content') and completion.content: for block in completion.content: # Only add the text if it's a 'text' block if hasattr(block, 'type') and block.type == 'text': if hasattr(block, 'text'): final_text += block.text # Any other block type (like 'thinking') is safely ignored. return final_text, str(completion) # --- END OF CORRECTION --- except AnthropicAPITimeoutError as e: print(f"Anthropic API request timed out: {e}") return "", str(e) except Exception as e: print(f"An unexpected error occurred while calling the Anthropic API: {e}") return "", str(e) class Claude_Opus(LLMInterface): """ Concrete implementation of LLMInterface using Anthropic's Claude models. """ def __init__(self): """ Initializes the Claude class by creating an instance of the Anthropic client. """ super().__init__() api_key = os.getenv("ANTHROPIC_API_KEY") self.client = Anthropic(api_key=api_key, timeout=600.0) self.name = 'claude' def call_llm(self, user_prompt: str) -> Tuple[str, Any]: """ Sends the combined user prompt to Anthropic's model. Args: user_prompt (str): The complete prompt (system + problem). Returns: Tuple[str, Any]: The LLM's response and metadata. """ try: # **FIX:** Removed the 'system' parameter. # The 'user_prompt' now contains the full concatenated prompt. completion = self.client.messages.create( model="claude-opus-4-1-20250805", max_tokens=32000, messages=[ {"role": "user", "content": user_prompt} ], thinking={ "type": "enabled", "budget_tokens": 20000 } ) # --- THIS IS THE CORRECTED LOGIC --- # Instead of assuming content[0].text, we loop through all content blocks # and build the final text string from "text" blocks only. final_text = "" if hasattr(completion, 'content') and completion.content: for block in completion.content: # Only add the text if it's a 'text' block if hasattr(block, 'type') and block.type == 'text': if hasattr(block, 'text'): final_text += block.text # Any other block type (like 'thinking') is safely ignored. return final_text, str(completion) # --- END OF CORRECTION --- except AnthropicAPITimeoutError as e: print(f"Anthropic API request timed out: {e}") return "", str(e) except Exception as e: print(f"An unexpected error occurred while calling the Anthropic API: {e}") return "", str(e) class Claude_Sonnet_4_5(LLMInterface): """ Concrete implementation of LLMInterface using Anthropic's Claude models. """ def __init__(self): """ Initializes the Claude class by creating an instance of the Anthropic client. """ super().__init__() api_key = os.getenv("ANTHROPIC_API_KEY") self.client = Anthropic(api_key=api_key, timeout=600.0) self.name = 'claude' def call_llm(self, user_prompt: str) -> Tuple[str, Any]: """ Sends the combined user prompt to Anthropic's model. Args: user_prompt (str): The complete prompt (system + problem). Returns: Tuple[str, Any]: The LLM's response and metadata. """ try: # **FIX:** Removed the 'system' parameter. # The 'user_prompt' now contains the full concatenated prompt. completion = self.client.messages.create( model="claude-sonnet-4-5-20250929", max_tokens=32000, messages=[ {"role": "user", "content": user_prompt} ], thinking={ "type": "enabled", "budget_tokens": 20000 } ) # --- THIS IS THE CORRECTED LOGIC --- # Instead of assuming content[0].text, we loop through all content blocks # and build the final text string from "text" blocks only. final_text = "" if hasattr(completion, 'content') and completion.content: for block in completion.content: # Only add the text if it's a 'text' block if hasattr(block, 'type') and block.type == 'text': if hasattr(block, 'text'): final_text += block.text # Any other block type (like 'thinking') is safely ignored. return final_text, str(completion) # --- END OF CORRECTION --- except AnthropicAPITimeoutError as e: print(f"Anthropic API request timed out: {e}") return "", str(e) except Exception as e: print(f"An unexpected error occurred while calling the Anthropic API: {e}") return "", str(e) class Grok(LLMInterface): """ Concrete implementation of LLMInterface using xAI's Grok models. """ def __init__(self): """ Initializes the Grok class by creating an instance of the OpenAI client pointed at the Grok API endpoint. """ super().__init__() api_key = os.getenv("XAI_API_KEY") self.client = OpenAI( api_key=api_key, base_url="https://api.x.ai/v1", timeout=1200.0 ) self.name = 'grok' def call_llm(self, user_prompt: str) -> Tuple[str, Any]: """ Sends the combined user prompt to Grok's model. Args: user_prompt (str): The complete prompt (system + problem). Returns: Tuple[str, Any]: The LLM's response and metadata. """ try: # Reverted to the simpler, single-message format completion = self.client.chat.completions.create( model="grok-4-0709", # Using a powerful Grok model messages=[ {"role": "user", "content": user_prompt} ] ) return completion.choices[0].message.content, str(completion) except APITimeoutError as e: print(f"Grok (xAI) API request timed out: {e}") return "", str(e) except Exception as e: print(f"An unexpected error occurred while calling the Grok (xAI) API: {e}") return "", str(e) class GPT_level(LLMInterface): """ Concrete implementation of LLMInterface using OpenAI's GPT-4o model. """ def __init__(self, level): """ Initializes the ExampleLLM class by creating an instance of the OpenAI client. """ super().__init__() api_key = os.getenv("OPENAI_API_KEY") self.client = OpenAI(api_key=api_key) self.name = 'gpt' + '-' + level self.reasoning_level = level def call_llm(self, user_prompt: str) -> Tuple[str, Any]: """ Sends the user prompt to OpenAI's GPT-5 model and retrieves the solution. Args: user_prompt (str): The complete prompt including the initial context and problem statement. Returns: Tuple[str, dict]: The LLM's response and a dictionary with token usage. """ try: completion = self.client.chat.completions.create( model="gpt-5", messages=[{"role": "user", "content": user_prompt}], reasoning_effort=self.reasoning_level, timeout=1200.0 ) usage_data = None if hasattr(completion, 'usage'): usage_data = { 'prompt_tokens': completion.usage.prompt_tokens, 'completion_tokens': completion.usage.completion_tokens, 'total_tokens': completion.usage.total_tokens } return completion.choices[0].message.content, usage_data except APITimeoutError as e: print(f"OpenAI API request timed out: {e}") return "", None except Exception as e: print(f"An unexpected error occurred while calling the OpenAI API: {e}") return "", None class Gemini3(LLMInterface): def __init__(self): """ Initializes the OpenRouter class. Args: model_name (str): The specific model ID on OpenRouter (e.g., 'anthropic/claude-3-opus', 'meta-llama/llama-3-70b-instruct'). Defaults to a fast generic model. """ super().__init__() api_key = os.getenv("OPENROUTER_API_KEY") # OpenRouter is compatible with the OpenAI SDK, we just change the base_url self.client = OpenAI( base_url="https://openrouter.ai/api/v1", api_key=api_key, ) self.model_name = "google/gemini-3-pro-preview" self.name = 'gemini3' def call_llm(self, user_prompt: str) -> Tuple[str, Any]: """ Sends the user prompt to OpenRouter and retrieves the solution. """ try: completion = self.client.chat.completions.create( model=self.model_name, messages=[{"role": "user", "content": user_prompt}], timeout=1200.0, extra_body={"reasoning": {"enabled": True}} ) return completion.choices[0].message.content, str(completion) except APITimeoutError as e: print(f"OpenRouter API request timed out: {e}") return "", str(e) except Exception as e: print(f"An unexpected error occurred while calling the OpenRouter API: {e}") return "", str(e) class GPT_5_1(LLMInterface): """ Concrete implementation of LLMInterface using OpenAI's GPT-4o model. """ def __init__(self): """ Initializes the ExampleLLM class by creating an instance of the OpenAI client. """ super().__init__() api_key = os.getenv("OPENAI_API_KEY") self.client = OpenAI(api_key=api_key) self.name = 'gpt' def call_llm(self, user_prompt: str) -> Tuple[str, Any]: """ Sends the user prompt to OpenAI's GPT-5 model and retrieves the solution. Args: user_prompt (str): The complete prompt including the initial context and problem statement. Returns: Tuple[str, Any]: The LLM's response and metadata about the completion. """ try: completion = self.client.chat.completions.create( model="gpt-5.1", messages=[{"role": "user", "content": user_prompt}], reasoning_effort='high', timeout=1200.0 ) usage_data = None if hasattr(completion, 'usage'): usage_data = { 'prompt_tokens': completion.usage.prompt_tokens, 'completion_tokens': completion.usage.completion_tokens, 'total_tokens': completion.usage.total_tokens } return completion.choices[0].message.content, usage_data except APITimeoutError as e: print(f"OpenAI API request timed out: {e}") return "", None except Exception as e: print(f"An unexpected error occurred while calling the OpenAI API: {e}") return "", None class Gemini3_level(LLMInterface): def __init__(self, thinking_level): # <--- Added timeout parameter """ Initializes the official Google Gen AI SDK (v2). Args: thinking_level (str): "low" (faster) or "high" (deeper reasoning). timeout_seconds (int): Maximum time in seconds to wait for a response. Defaults to 600s (10 minutes). """ timeout_seconds = 1200 super().__init__() self.api_key = os.getenv("GOOGLE_API_KEY") # --- NEW: Configure Timeout --- # The SDK expects timeout in MILLISECONDS. if timeout_seconds: http_options = types.HttpOptions(timeout=timeout_seconds * 1000) else: http_options = None # Pass http_options to the Client self.client = genai.Client( api_key=self.api_key, http_options=http_options ) # ----------------------------- self.model_name = "gemini-3-pro-preview" self.thinking_level = thinking_level self.name = 'gemini3' + self.thinking_level def call_llm(self, user_prompt: str) -> Tuple[str, Dict[str, int]]: """ Generates content using the native Google SDK with thinking parameters. """ try: think_config = types.ThinkingConfig(thinking_level=self.thinking_level) gen_config = types.GenerateContentConfig( thinking_config=think_config ) response = self.client.models.generate_content( model=self.model_name, contents=user_prompt, config=gen_config ) text_content = response.text usage_meta = response.usage_metadata usage_data = { 'prompt_tokens': usage_meta.prompt_token_count if usage_meta else 0, 'completion_tokens': usage_meta.candidates_token_count if usage_meta else 0, 'total_tokens': usage_meta.total_token_count if usage_meta else 0 } return text_content, usage_data except Exception as e: # This will now catch the timeout error specifically print(f"Gemini Native SDK Error: {e}") return None, None class Claude_Opus_4_5(LLMInterface): """ Concrete implementation of LLMInterface using Anthropic's Claude models. """ def __init__(self): """ Initializes the Claude class by creating an instance of the Anthropic client. """ super().__init__() api_key = os.getenv("ANTHROPIC_API_KEY") self.client = Anthropic(api_key=api_key, timeout=1200.0) self.name = 'claude-opus-4-5' def call_llm(self, user_prompt: str) -> Tuple[str, Any]: """ Sends the combined user prompt to Anthropic's model. Args: user_prompt (str): The complete prompt (system + problem). Returns: Tuple[str, Any]: The LLM's response and metadata. """ try: # **FIX:** Removed the 'system' parameter. # The 'user_prompt' now contains the full concatenated prompt. completion = self.client.messages.create( model="claude-opus-4-5-20251101", max_tokens=32000, messages=[ {"role": "user", "content": user_prompt} ], thinking={ "type": "enabled", "budget_tokens": 20000 } ) # --- THIS IS THE CORRECTED LOGIC --- # Instead of assuming content[0].text, we loop through all content blocks # and build the final text string from "text" blocks only. final_text = "" if hasattr(completion, 'content') and completion.content: for block in completion.content: # Only add the text if it's a 'text' block if hasattr(block, 'type') and block.type == 'text': if hasattr(block, 'text'): final_text += block.text # Any other block type (like 'thinking') is safely ignored. return final_text, str(completion) # --- END OF CORRECTION --- except AnthropicAPITimeoutError as e: print(f"Anthropic API request timed out: {e}") return "", str(e) except Exception as e: print(f"An unexpected error occurred while calling the Anthropic API: {e}") return "", str(e)