#!/usr/bin/env python3 """ ImageNet Pareto Evaluator - 5M Parameter Variant Evaluates submitted solutions on a synthetic ImageNet-like dataset. This variant enforces a maximum parameter constraint of 5,000,000. Scoring is based on accuracy achievement relative to the baseline. """ import argparse import importlib.util import json import sys import time from pathlib import Path from types import ModuleType from typing import Dict, Iterable, List, Sequence, Tuple import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, Dataset, TensorDataset CONFIG_PATH = Path(__file__).with_name("score_config.json") # Dataset configuration NUM_CLASSES = 128 FEATURE_DIM = 384 # flattened feature dimension (simulating 3x8x16 tiles) TRAIN_SAMPLES_PER_CLASS = 16 VAL_SAMPLES_PER_CLASS = 4 TEST_SAMPLES_PER_CLASS = 8 DATA_NOISE_STD = 0.4 PROTOTYPE_SCALE = 2.5 BATCH_SIZE = 128 DEVICE = torch.device("cpu") # Variant-specific constraint PARAM_LIMIT = 5000000.0 def load_score_config() -> Dict: default = { "param_limit": 5000000.0, "baseline_accuracy": 0.65, "scoring": { "max_score": 100.0, "min_score": 0.0, }, } if CONFIG_PATH.exists(): try: loaded = json.loads(CONFIG_PATH.read_text()) def merge(base: Dict, new: Dict) -> Dict: result = dict(base) for key, value in new.items(): if isinstance(value, dict) and isinstance(result.get(key), dict): result[key] = merge(result[key], value) else: result[key] = value return result return merge(default, loaded) except (OSError, json.JSONDecodeError) as exc: print( f"[evaluator] WARNING: Failed to load score_config.json ({exc}); using defaults", file=sys.stderr, ) return default SCORE_CONFIG = load_score_config() def build_synthetic_dataset() -> Tuple[TensorDataset, TensorDataset, TensorDataset]: generator = torch.Generator().manual_seed(2025) prototypes = torch.randn(NUM_CLASSES, FEATURE_DIM, generator=generator) prototypes = nn.functional.normalize(prototypes, dim=1) * PROTOTYPE_SCALE def sample_split( per_class: int, split_seed: int ) -> Tuple[torch.Tensor, torch.Tensor]: split_gen = torch.Generator().manual_seed(split_seed) features = [] labels = [] for cls in range(NUM_CLASSES): base = prototypes[cls] noise = ( torch.randn(per_class, FEATURE_DIM, generator=split_gen) * DATA_NOISE_STD ) samples = base.unsqueeze(0) + noise features.append(samples) labels.append(torch.full((per_class,), cls, dtype=torch.long)) x = torch.cat(features, dim=0) y = torch.cat(labels, dim=0) perm = torch.randperm(x.size(0), generator=split_gen) return x[perm], y[perm] train_x, train_y = sample_split(TRAIN_SAMPLES_PER_CLASS, split_seed=1337) val_x, val_y = sample_split(VAL_SAMPLES_PER_CLASS, split_seed=2026) test_x, test_y = sample_split(TEST_SAMPLES_PER_CLASS, split_seed=4242) return ( TensorDataset(train_x, train_y), TensorDataset(val_x, val_y), TensorDataset(test_x, test_y), ) def make_dataloaders() -> Tuple[DataLoader, DataLoader, DataLoader]: train_ds, val_ds, test_ds = build_synthetic_dataset() train_loader = DataLoader(train_ds, batch_size=BATCH_SIZE, shuffle=True) val_loader = DataLoader(val_ds, batch_size=BATCH_SIZE, shuffle=False) test_loader = DataLoader(test_ds, batch_size=BATCH_SIZE, shuffle=False) return train_loader, val_loader, test_loader def load_solution_module(solution_path: Path) -> ModuleType: if not solution_path.exists(): raise FileNotFoundError(f"solution.py not found at {solution_path}") spec = importlib.util.spec_from_file_location("submitted_solution", solution_path) if spec is None or spec.loader is None: raise ImportError(f"Failed to load spec for {solution_path}") module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module def evaluate_model(model: nn.Module, data_loader: DataLoader) -> float: model.eval() correct = 0 total = 0 with torch.no_grad(): for inputs, targets in data_loader: inputs = inputs.to(DEVICE) targets = targets.to(DEVICE) outputs = model(inputs) if outputs.ndim == 1: outputs = outputs.unsqueeze(0) preds = outputs.argmax(dim=1) correct += (preds == targets).sum().item() total += targets.numel() if total == 0: return 0.0 return correct / total def count_trainable_parameters(model: nn.Module) -> int: return sum(p.numel() for p in model.parameters() if p.requires_grad) def compute_accuracy_score(accuracy: float, config: Dict = SCORE_CONFIG) -> float: """ Score based on accuracy relative to baseline using linear scaling. Scoring formula: Score = (accuracy - baseline_accuracy) / (1.0 - baseline_accuracy) × 100.0 Clamped to [0, 100] range """ baseline_acc = float(config.get("baseline_accuracy", 0.65)) max_score = float(config["scoring"].get("max_score", 100.0)) min_score = float(config["scoring"].get("min_score", 0.0)) # Linear interpolation from baseline to 100% accuracy score = (accuracy - baseline_acc) / (1.0 - baseline_acc) * 100.0 # Clamp to [min_score, max_score] return float(min(max_score, max(min_score, score))) class Evaluator: def __init__(self): """Initialize evaluator with hard-coded environment setup and load test traces""" self.score_config = load_score_config() self.param_limit = float(self.score_config.get("param_limit", PARAM_LIMIT)) self.baseline_accuracy = float(self.score_config.get("baseline_accuracy", 0.65)) # Load test traces (dataloaders) self.train_loader, self.val_loader, self.test_loader = make_dataloaders() self.metadata = { "num_classes": NUM_CLASSES, "input_dim": FEATURE_DIM, "train_samples": len(self.train_loader.dataset), # type: ignore[arg-type] "val_samples": len(self.val_loader.dataset), # type: ignore[arg-type] "test_samples": len(self.test_loader.dataset), # type: ignore[arg-type] "device": str(DEVICE), "param_limit": self.param_limit, "baseline_accuracy": self.baseline_accuracy, } def evaluate(self, solution): """ Evaluate the solution using the loaded traces Args: solution: Solution instance with solve() method Returns: Dict with score and other metrics """ torch.manual_seed(2025) np.random.seed(2025) print("[evaluator] Invoking solution.solve()...", file=sys.stderr) start = time.time() # Call solution.solve() with trace config and traces model = solution.solve(self.train_loader, self.val_loader, self.metadata) train_time = time.time() - start if not isinstance(model, nn.Module): raise TypeError( "solution.solve() must return an instance of torch.nn.Module" ) model.to(DEVICE) param_count = count_trainable_parameters(model) print( f"[evaluator] Model has {param_count:,} trainable parameters", file=sys.stderr, ) # Check parameter constraint if param_count > self.param_limit: error_msg = f"Model exceeds parameter limit: {param_count:,} > {self.param_limit:,.0f}" print(f"[evaluator] ERROR: {error_msg}", file=sys.stderr) return { "score": 0.0, "runs_successfully": 0.0, "error": error_msg, "metrics": { "params": float(param_count), "param_limit": self.param_limit, "violates_constraint": True, }, } accuracy = evaluate_model(model, self.test_loader) print(f"[evaluator] Test accuracy: {accuracy:.4f}", file=sys.stderr) score = compute_accuracy_score(accuracy, self.score_config) print(f"[evaluator] Final score: {score:.2f}", file=sys.stderr) return { "score": score, "runs_successfully": 1.0, "metrics": { "accuracy": accuracy, "train_time_seconds": train_time, "params": float(param_count), "param_limit": self.param_limit, "baseline_accuracy": self.baseline_accuracy, "dataset": { "num_classes": NUM_CLASSES, "train_samples": self.metadata["train_samples"], "val_samples": self.metadata["val_samples"], "test_samples": self.metadata["test_samples"], }, }, } def main() -> None: parser = argparse.ArgumentParser(description="Evaluate ImageNet Pareto 5M solution") parser.add_argument( "--solution", default="../../execution_env/solution_env/solution.py" ) parser.add_argument("--out", default="results.json") args = parser.parse_args() solution_path = Path(args.solution).resolve() output_path = Path(args.out) try: module = load_solution_module(solution_path) # Use new Solution class format solution_class = getattr(module, "Solution", None) if solution_class is None: raise AttributeError("Solution class not found in solution.py") print("[evaluator] Using Solution class format", file=sys.stderr) evaluator = Evaluator() solution = solution_class() results = evaluator.evaluate(solution) with output_path.open("w", encoding="utf-8") as fh: json.dump(results, fh, indent=2) print(f"[evaluator] Results written to {output_path}", file=sys.stderr) print(json.dumps(results)) except Exception as exc: # pylint: disable=broad-except error_payload = { "score": 0.0, "runs_successfully": 0.0, "error": str(exc), "error_type": type(exc).__name__, } with output_path.open("w", encoding="utf-8") as fh: json.dump(error_payload, fh, indent=2) print(f"[evaluator] ERROR: {exc}", file=sys.stderr) print(json.dumps(error_payload)) if __name__ == "__main__": main()