|
|
#ifndef ANDERSONACCELERATION_H_ |
|
|
#define ANDERSONACCELERATION_H_ |
|
|
|
|
|
#include "Types.h" |
|
|
#include <cassert> |
|
|
#include <algorithm> |
|
|
#include <vector> |
|
|
#include <omp.h> |
|
|
#include <fstream> |
|
|
|
|
|
class AndersonAcceleration |
|
|
{ |
|
|
public: |
|
|
AndersonAcceleration() |
|
|
:m_(-1), dim_(-1), iter_(-1), col_idx_(-1) {} |
|
|
|
|
|
void replace(const Scalar *u) |
|
|
{ |
|
|
current_u_ = Eigen::Map<const VectorX>(u, dim_); |
|
|
} |
|
|
|
|
|
const VectorX& compute(const Scalar* g) |
|
|
{ |
|
|
assert(iter_ >= 0); |
|
|
|
|
|
Eigen::Map<const VectorX> G(g, dim_); |
|
|
current_F_ = G - current_u_; |
|
|
|
|
|
if (iter_ == 0) |
|
|
{ |
|
|
prev_dF_.col(0) = -current_F_; |
|
|
prev_dG_.col(0) = -G; |
|
|
current_u_ = G; |
|
|
} |
|
|
else |
|
|
{ |
|
|
prev_dF_.col(col_idx_) += current_F_; |
|
|
prev_dG_.col(col_idx_) += G; |
|
|
|
|
|
Scalar eps = 1e-14; |
|
|
Scalar scale = std::max(eps, prev_dF_.col(col_idx_).norm()); |
|
|
dF_scale_(col_idx_) = scale; |
|
|
prev_dF_.col(col_idx_) /= scale; |
|
|
|
|
|
int m_k = std::min(m_, iter_); |
|
|
|
|
|
|
|
|
if (m_k == 1) |
|
|
{ |
|
|
theta_(0) = 0; |
|
|
Scalar dF_sqrnorm = prev_dF_.col(col_idx_).squaredNorm(); |
|
|
M_(0, 0) = dF_sqrnorm; |
|
|
Scalar dF_norm = std::sqrt(dF_sqrnorm); |
|
|
|
|
|
if (dF_norm > eps) { |
|
|
theta_(0) = (prev_dF_.col(col_idx_) / dF_norm).dot(current_F_ / dF_norm); |
|
|
} |
|
|
} |
|
|
else |
|
|
{ |
|
|
|
|
|
VectorX new_inner_prod = (prev_dF_.col(col_idx_).transpose() * prev_dF_.block(0, 0, dim_, m_k)).transpose(); |
|
|
M_.block(col_idx_, 0, 1, m_k) = new_inner_prod.transpose(); |
|
|
M_.block(0, col_idx_, m_k, 1) = new_inner_prod; |
|
|
|
|
|
|
|
|
cod_.compute(M_.block(0, 0, m_k, m_k)); |
|
|
theta_.head(m_k) = cod_.solve(prev_dF_.block(0, 0, dim_, m_k).transpose() * current_F_); |
|
|
} |
|
|
|
|
|
|
|
|
current_u_ = G - prev_dG_.block(0, 0, dim_, m_k) * ((theta_.head(m_k).array() / dF_scale_.head(m_k).array()).matrix()); |
|
|
col_idx_ = (col_idx_ + 1) % m_; |
|
|
prev_dF_.col(col_idx_) = -current_F_; |
|
|
prev_dG_.col(col_idx_) = -G; |
|
|
} |
|
|
|
|
|
iter_++; |
|
|
return current_u_; |
|
|
} |
|
|
void reset(const Scalar *u) |
|
|
{ |
|
|
iter_ = 0; |
|
|
col_idx_ = 0; |
|
|
current_u_ = Eigen::Map<const VectorX>(u, dim_); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void init(int m, int d, const Scalar* u0) |
|
|
{ |
|
|
assert(m > 0); |
|
|
m_ = m; |
|
|
dim_ = d; |
|
|
current_u_.resize(d); |
|
|
current_F_.resize(d); |
|
|
prev_dG_.resize(d, m); |
|
|
prev_dF_.resize(d, m); |
|
|
M_.resize(m, m); |
|
|
theta_.resize(m); |
|
|
dF_scale_.resize(m); |
|
|
current_u_ = Eigen::Map<const VectorX>(u0, d); |
|
|
iter_ = 0; |
|
|
col_idx_ = 0; |
|
|
} |
|
|
|
|
|
private: |
|
|
VectorX current_u_; |
|
|
VectorX current_F_; |
|
|
MatrixXX prev_dG_; |
|
|
MatrixXX prev_dF_; |
|
|
MatrixXX M_; |
|
|
VectorX theta_; |
|
|
VectorX dF_scale_; |
|
|
Eigen::CompleteOrthogonalDecomposition<MatrixXX> cod_; |
|
|
|
|
|
int m_; |
|
|
int dim_; |
|
|
int iter_; |
|
|
int col_idx_; |
|
|
int m_k_; |
|
|
|
|
|
Eigen::Matrix4d current_T_; |
|
|
Eigen::Matrix4d current_F_T_; |
|
|
|
|
|
MatrixXX T_prev_dF_; |
|
|
MatrixXX T_prev_dG_; |
|
|
}; |
|
|
|
|
|
|
|
|
#endif |
|
|
|