/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * Copyright 2011 Jose Luis Blanco (joseluisblancoc@gmail.com). * All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef NANOFLANN_HPP_ #define NANOFLANN_HPP_ #include #include #include #include #include // for fwrite() #include // for fabs(),... #include // Avoid conflicting declaration of min/max macros in windows headers #if !defined(NOMINMAX) && (defined(_WIN32) || defined(_WIN32_) || defined(WIN32) || defined(_WIN64)) # define NOMINMAX # ifdef max # undef max # undef min # endif #endif namespace nanoflann { /** @addtogroup nanoflann_grp nanoflann C++ library for ANN * @{ */ /** Library version: 0xMmP (M=Major,m=minor,P=path) */ #define NANOFLANN_VERSION 0x113 /** @addtogroup result_sets_grp Result set classes * @{ */ template class KNNResultSet { IndexType * indices; DistanceType* dists; CountType capacity; CountType count; public: inline KNNResultSet(CountType capacity_) : capacity(capacity_), count(0) { } inline void init(IndexType* indices_, DistanceType* dists_) { indices = indices_; dists = dists_; count = 0; dists[capacity-1] = (std::numeric_limits::max)(); } inline CountType size() const { return count; } inline bool full() const { return count == capacity; } inline void addPoint(DistanceType dist, IndexType index) { CountType i; for (i=count; i>0; --i) { #ifdef NANOFLANN_FIRST_MATCH // If defined and two poins have the same distance, the one with the lowest-index will be returned first. if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) ) { #else if (dists[i-1]>dist) { #endif if (i class RadiusResultSet { public: const DistanceType radius; std::vector >& m_indices_dists; inline RadiusResultSet(DistanceType radius_, std::vector >& indices_dists) : radius(radius_), m_indices_dists(indices_dists) { init(); } inline ~RadiusResultSet() { } inline void init() { clear(); } inline void clear() { m_indices_dists.clear(); } inline size_t size() const { return m_indices_dists.size(); } inline bool full() const { return true; } inline void addPoint(DistanceType dist, IndexType index) { if (dist(index,dist)); } inline DistanceType worstDist() const { return radius; } /** Clears the result set and adjusts the search radius. */ inline void set_radius_and_clear( const DistanceType r ) { radius = r; clear(); } /** * Find the worst result (furtherest neighbor) without copying or sorting * Pre-conditions: size() > 0 */ std::pair worst_item() const { if (m_indices_dists.empty()) throw std::runtime_error("Cannot invoke RadiusResultSet::worst_item() on an empty list of results."); typedef typename std::vector >::const_iterator DistIt; DistIt it = std::max_element(m_indices_dists.begin(), m_indices_dists.end()); return *it; } }; /** operator "<" for std::sort() */ struct IndexDist_Sorter { /** PairType will be typically: std::pair */ template inline bool operator()(const PairType &p1, const PairType &p2) const { return p1.second < p2.second; } }; /** @} */ /** @addtogroup loadsave_grp Load/save auxiliary functions * @{ */ template void save_value(FILE* stream, const T& value, size_t count = 1) { fwrite(&value, sizeof(value),count, stream); } template void save_value(FILE* stream, const std::vector& value) { size_t size = value.size(); fwrite(&size, sizeof(size_t), 1, stream); fwrite(&value[0], sizeof(T), size, stream); } template void load_value(FILE* stream, T& value, size_t count = 1) { size_t read_cnt = fread(&value, sizeof(value), count, stream); if (read_cnt != count) { throw std::runtime_error("Cannot read from file"); } } template void load_value(FILE* stream, std::vector& value) { size_t size; size_t read_cnt = fread(&size, sizeof(size_t), 1, stream); if (read_cnt!=1) { throw std::runtime_error("Cannot read from file"); } value.resize(size); read_cnt = fread(&value[0], sizeof(T), size, stream); if (read_cnt!=size) { throw std::runtime_error("Cannot read from file"); } } /** @} */ /** @addtogroup metric_grp Metric (distance) classes * @{ */ template inline T abs(T x) { return (x<0) ? -x : x; } template<> inline int abs(int x) { return ::abs(x); } template<> inline float abs(float x) { return fabsf(x); } template<> inline double abs(double x) { return fabs(x); } template<> inline long double abs(long double x) { return fabsl(x); } /** Manhattan distance functor (generic version, optimized for high-dimensionality data sets). * Corresponding distance traits: nanoflann::metric_L1 * \tparam T Type of the elements (e.g. double, float, uint8_t) * \tparam DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t) */ template struct L1_Adaptor { typedef T ElementType; typedef _DistanceType DistanceType; const DataSource &data_source; L1_Adaptor(const DataSource &_data_source) : data_source(_data_source) { } inline DistanceType operator()(const T* a, const size_t b_idx, size_t size, DistanceType worst_dist = -1) const { DistanceType result = DistanceType(); const T* last = a + size; const T* lastgroup = last - 3; size_t d = 0; /* Process 4 items with each loop for efficiency. */ while (a < lastgroup) { const DistanceType diff0 = nanoflann::abs(a[0] - data_source.kdtree_get_pt(b_idx,d++)); const DistanceType diff1 = nanoflann::abs(a[1] - data_source.kdtree_get_pt(b_idx,d++)); const DistanceType diff2 = nanoflann::abs(a[2] - data_source.kdtree_get_pt(b_idx,d++)); const DistanceType diff3 = nanoflann::abs(a[3] - data_source.kdtree_get_pt(b_idx,d++)); result += diff0 + diff1 + diff2 + diff3; a += 4; if ((worst_dist>0)&&(result>worst_dist)) { return result; } } /* Process last 0-3 components. Not needed for standard vector lengths. */ while (a < last) { result += nanoflann::abs( *a++ - data_source.kdtree_get_pt(b_idx,d++) ); } return result; } template inline DistanceType accum_dist(const U a, const V b, int dim) const { return (a-b)*(a-b); } }; /** Squared Euclidean distance functor (generic version, optimized for high-dimensionality data sets). * Corresponding distance traits: nanoflann::metric_L2 * \tparam T Type of the elements (e.g. double, float, uint8_t) * \tparam DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t) */ template struct L2_Adaptor { typedef T ElementType; typedef _DistanceType DistanceType; const DataSource &data_source; L2_Adaptor(const DataSource &_data_source) : data_source(_data_source) { } inline DistanceType operator()(const T* a, const size_t b_idx, size_t size, DistanceType worst_dist = -1) const { DistanceType result = DistanceType(); const T* last = a + size; const T* lastgroup = last - 3; size_t d = 0; /* Process 4 items with each loop for efficiency. */ while (a < lastgroup) { const DistanceType diff0 = a[0] - data_source.kdtree_get_pt(b_idx,d++); const DistanceType diff1 = a[1] - data_source.kdtree_get_pt(b_idx,d++); const DistanceType diff2 = a[2] - data_source.kdtree_get_pt(b_idx,d++); const DistanceType diff3 = a[3] - data_source.kdtree_get_pt(b_idx,d++); result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3; a += 4; if ((worst_dist>0)&&(result>worst_dist)) { return result; } } /* Process last 0-3 components. Not needed for standard vector lengths. */ while (a < last) { const DistanceType diff0 = *a++ - data_source.kdtree_get_pt(b_idx,d++); result += diff0 * diff0; } return result; } template inline DistanceType accum_dist(const U a, const V b, int dim) const { return (a-b)*(a-b); } }; /** Squared Euclidean distance functor (suitable for low-dimensionality datasets, like 2D or 3D point clouds) * Corresponding distance traits: nanoflann::metric_L2_Simple * \tparam T Type of the elements (e.g. double, float, uint8_t) * \tparam DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t) */ template struct L2_Simple_Adaptor { typedef T ElementType; typedef _DistanceType DistanceType; const DataSource &data_source; L2_Simple_Adaptor(const DataSource &_data_source) : data_source(_data_source) { } inline DistanceType operator()(const T* a, const size_t b_idx, size_t size) const { return data_source.kdtree_distance(a,b_idx,size); } template inline DistanceType accum_dist(const U a, const V b, int dim) const { dim = dim; return (a-b)*(a-b); } }; /** Metaprogramming helper traits class for the L1 (Manhattan) metric */ struct metric_L1 { template struct traits { typedef L1_Adaptor distance_t; }; }; /** Metaprogramming helper traits class for the L2 (Euclidean) metric */ struct metric_L2 { template struct traits { typedef L2_Adaptor distance_t; }; }; /** Metaprogramming helper traits class for the L2_simple (Euclidean) metric */ struct metric_L2_Simple { template struct traits { typedef L2_Simple_Adaptor distance_t; }; }; /** @} */ /** @addtogroup param_grp Parameter structs * @{ */ /** Parameters (see http://code.google.com/p/nanoflann/ for help choosing the parameters) */ struct KDTreeSingleIndexAdaptorParams { KDTreeSingleIndexAdaptorParams(size_t _leaf_max_size = 10, int dim_ = -1) : leaf_max_size(_leaf_max_size), dim(dim_) {} size_t leaf_max_size; int dim; }; /** Search options for KDTreeSingleIndexAdaptor::findNeighbors() */ struct SearchParams { /** Note: The first argument (checks_IGNORED_) is ignored, but kept for compatibility with the FLANN interface */ SearchParams(int checks_IGNORED_ = 32, float eps_ = 0, bool sorted_ = true ) : eps(eps_), sorted(sorted_) { checks_IGNORED_ = checks_IGNORED_; } int checks; //!< Ignored parameter (Kept for compatibility with the FLANN interface). float eps; //!< search for eps-approximate neighbours (default: 0) bool sorted; //!< only for radius search, require neighbours sorted by distance (default: true) }; /** @} */ /** @addtogroup memalloc_grp Memory allocation * @{ */ /** * Allocates (using C's malloc) a generic type T. * * Params: * count = number of instances to allocate. * Returns: pointer (of type T*) to memory buffer */ template inline T* allocate(size_t count = 1) { T* mem = (T*) ::malloc(sizeof(T)*count); return mem; } /** * Pooled storage allocator * * The following routines allow for the efficient allocation of storage in * small chunks from a specified pool. Rather than allowing each structure * to be freed individually, an entire pool of storage is freed at once. * This method has two advantages over just using malloc() and free(). First, * it is far more efficient for allocating small objects, as there is * no overhead for remembering all the information needed to free each * object or consolidating fragmented memory. Second, the decision about * how long to keep an object is made at the time of allocation, and there * is no need to track down all the objects to free them. * */ const size_t WORDSIZE=16; const size_t BLOCKSIZE=8192; class PooledAllocator { /* We maintain memory alignment to word boundaries by requiring that all allocations be in multiples of the machine wordsize. */ /* Size of machine word in bytes. Must be power of 2. */ /* Minimum number of bytes requested at a time from the system. Must be multiple of WORDSIZE. */ size_t remaining; /* Number of bytes left in current block of storage. */ void* base; /* Pointer to base of current block of storage. */ void* loc; /* Current location in block to next allocate memory. */ size_t blocksize; public: size_t usedMemory; size_t wastedMemory; /** Default constructor. Initializes a new pool. */ PooledAllocator(const size_t blocksize = BLOCKSIZE) { this->blocksize = blocksize; remaining = 0; base = NULL; usedMemory = 0; wastedMemory = 0; } /** * Destructor. Frees all the memory allocated in this pool. */ ~PooledAllocator() { while (base != NULL) { void *prev = *((void**) base); /* Get pointer to prev block. */ ::free(base); base = prev; } } /** * Returns a pointer to a piece of new memory of the given size in bytes * allocated from the pool. */ void* malloc(const size_t req_size) { /* Round size up to a multiple of wordsize. The following expression only works for WORDSIZE that is a power of 2, by masking last bits of incremented size to zero. */ const size_t size = (req_size + (WORDSIZE - 1)) & ~(WORDSIZE - 1); /* Check whether a new block must be allocated. Note that the first word of a block is reserved for a pointer to the previous block. */ if (size > remaining) { wastedMemory += remaining; /* Allocate new storage. */ const size_t blocksize = (size + sizeof(void*) + (WORDSIZE-1) > BLOCKSIZE) ? size + sizeof(void*) + (WORDSIZE-1) : BLOCKSIZE; // use the standard C malloc to allocate memory void* m = ::malloc(blocksize); if (!m) { fprintf(stderr,"Failed to allocate memory.\n"); return NULL; } /* Fill first word of new block with pointer to previous block. */ ((void**) m)[0] = base; base = m; size_t shift = 0; //int size_t = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) & (WORDSIZE-1))) & (WORDSIZE-1); remaining = blocksize - sizeof(void*) - shift; loc = ((char*)m + sizeof(void*) + shift); } void* rloc = loc; loc = (char*)loc + size; remaining -= size; usedMemory += size; return rloc; } /** * Allocates (using this pool) a generic type T. * * Params: * count = number of instances to allocate. * Returns: pointer (of type T*) to memory buffer */ template T* allocate(const size_t count = 1) { T* mem = (T*) this->malloc(sizeof(T)*count); return mem; } }; /** @} */ /** @addtogroup kdtrees_grp KD-tree classes and adaptors * @{ */ /** kd-tree index * * Contains the k-d trees and other information for indexing a set of points * for nearest-neighbor matching. * * The class "DatasetAdaptor" must provide the following interface (can be non-virtual, inlined methods): * * \code * // Must return the number of data points * inline size_t kdtree_get_point_count() const { ... } * * // Must return the Euclidean (L2) distance between the vector "p1[0:size-1]" and the data point with index "idx_p2" stored in the class: * inline DistanceType kdtree_distance(const T *p1, const size_t idx_p2,size_t size) const { ... } * * // Must return the dim'th component of the idx'th point in the class: * inline T kdtree_get_pt(const size_t idx, int dim) const { ... } * * // Optional bounding-box computation: return false to default to a standard bbox computation loop. * // Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again. * // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds) * template * bool kdtree_get_bbox(BBOX &bb) const * { * bb[0].low = ...; bb[0].high = ...; // 0th dimension limits * bb[1].low = ...; bb[1].high = ...; // 1st dimension limits * ... * return true; * } * * \endcode * * \tparam IndexType Will be typically size_t or int */ template class KDTreeSingleIndexAdaptor { public: typedef typename Distance::ElementType ElementType; typedef typename Distance::DistanceType DistanceType; protected: /** * Array of indices to vectors in the dataset. */ std::vector vind; size_t m_leaf_max_size; /** * The dataset used by this index */ const DatasetAdaptor &dataset; //!< The source of our data const KDTreeSingleIndexAdaptorParams index_params; size_t m_size; int dim; //!< Dimensionality of each data point /*--------------------- Internal Data Structures --------------------------*/ struct Node { union { struct { /** * Indices of points in leaf node */ IndexType left, right; } lr; struct { /** * Dimension used for subdivision. */ int divfeat; /** * The values used for subdivision. */ DistanceType divlow, divhigh; } sub; }; /** * The child nodes. */ Node* child1, * child2; }; typedef Node* NodePtr; struct Interval { ElementType low, high; }; typedef std::vector BoundingBox; /** This record represents a branch point when finding neighbors in the tree. It contains a record of the minimum distance to the query point, as well as the node at which the search resumes. */ template struct BranchStruct { T node; /* Tree node at which search resumes */ DistanceType mindist; /* Minimum distance to query for all nodes below. */ BranchStruct() {} BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {} inline bool operator<(const BranchStruct& rhs) const { return mindist BranchSt; typedef BranchSt* Branch; BoundingBox root_bbox; /** * Pooled memory allocator. * * Using a pooled memory allocator is more efficient * than allocating memory directly when there is a large * number small of memory allocations. */ PooledAllocator pool; public: Distance distance; /** * KDTree constructor * * Params: * inputData = dataset with the input features * params = parameters passed to the kdtree algorithm (see http://code.google.com/p/nanoflann/ for help choosing the parameters) */ KDTreeSingleIndexAdaptor(const int dimensionality, const DatasetAdaptor& inputData, const KDTreeSingleIndexAdaptorParams& params = KDTreeSingleIndexAdaptorParams() ) : dataset(inputData), index_params(params), distance(inputData) { m_size = dataset.kdtree_get_point_count(); dim = dimensionality; if (DIM>0) dim=DIM; else { if (params.dim>0) dim = params.dim; } m_leaf_max_size = params.leaf_max_size; // Create a permutable array of indices to the input vectors. init_vind(); } /** * Standard destructor */ ~KDTreeSingleIndexAdaptor() { } /** * Builds the index */ void buildIndex() { init_vind(); computeBoundingBox(root_bbox); root_node = divideTree(0, m_size, root_bbox ); // construct the tree } /** * Returns size of index. */ size_t size() const { return m_size; } /** * Returns the length of an index feature. */ size_t veclen() const { return static_cast(DIM>0 ? DIM : dim); } /** * Computes the inde memory usage * Returns: memory used by the index */ size_t usedMemory() const { return pool.usedMemory+pool.wastedMemory+dataset.kdtree_get_point_count()*sizeof(IndexType); // pool memory and vind array memory } /** \name Query methods * @{ */ /** * Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored inside * the result object. * * Params: * result = the result object in which the indices of the nearest-neighbors are stored * vec = the vector for which to search the nearest neighbors * * \tparam RESULTSET Should be any ResultSet * \sa knnSearch, radiusSearch */ template void findNeighbors(RESULTSET& result, const ElementType* vec, const SearchParams& searchParams) const { assert(vec); float epsError = 1+searchParams.eps; std::vector dists( (DIM>0 ? DIM : dim) ,0); DistanceType distsq = computeInitialDistances(vec, dists); searchLevel(result, vec, root_node, distsq, dists, epsError); // "count_leaf" parameter removed since was neither used nor returned to the user. } /** * Find the "num_closest" nearest neighbors to the \a query_point[0:dim-1]. Their indices are stored inside * the result object. * \sa radiusSearch, findNeighbors * \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface. */ inline void knnSearch(const ElementType *query_point, const size_t num_closest, IndexType *out_indices, DistanceType *out_distances_sq) const { nanoflann::KNNResultSet resultSet(num_closest); resultSet.init(out_indices, out_distances_sq); this->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); } /** * Find all the neighbors to \a query_point[0:dim-1] within a maximum radius. * The output is given as a vector of pairs, of which the first element is a point index and the second the corresponding distance. * Previous contents of \a IndicesDists are cleared. * * If searchParams.sorted==true, the output list is sorted by ascending distances. * * For a better performance, it is advisable to do a .reserve() on the vector if you have any wild guess about the number of expected matches. * * \sa knnSearch, findNeighbors * \return The number of points within the given radius (i.e. indices.size() or dists.size() ) */ size_t radiusSearch(const ElementType *query_point,const DistanceType radius, std::vector >& IndicesDists, const SearchParams& searchParams) const { RadiusResultSet resultSet(radius,IndicesDists); this->findNeighbors(resultSet, query_point, searchParams); if (searchParams.sorted) std::sort(IndicesDists.begin(),IndicesDists.end(), IndexDist_Sorter() ); return resultSet.size(); } /** @} */ private: /** Make sure the auxiliary list \a vind has the same size than the current dataset, and re-generate if size has changed. */ void init_vind() { // Create a permutable array of indices to the input vectors. m_size = dataset.kdtree_get_point_count(); if (vind.size()!=m_size) { vind.resize(m_size); for (size_t i = 0; i < m_size; i++) vind[i] = i; } } /// Helper accessor to the dataset points: inline ElementType dataset_get(size_t idx, int component) const { return dataset.kdtree_get_pt(idx,component); } void save_tree(FILE* stream, NodePtr tree) { save_value(stream, *tree); if (tree->child1!=NULL) { save_tree(stream, tree->child1); } if (tree->child2!=NULL) { save_tree(stream, tree->child2); } } void load_tree(FILE* stream, NodePtr& tree) { tree = pool.allocate(); load_value(stream, *tree); if (tree->child1!=NULL) { load_tree(stream, tree->child1); } if (tree->child2!=NULL) { load_tree(stream, tree->child2); } } void computeBoundingBox(BoundingBox& bbox) { bbox.resize((DIM>0 ? DIM : dim)); if (dataset.kdtree_get_bbox(bbox)) { // Done! It was implemented in derived class } else { for (int i=0; i<(DIM>0 ? DIM : dim); ++i) { bbox[i].low = bbox[i].high = dataset_get(0,i); } const size_t N = dataset.kdtree_get_point_count(); for (size_t k=1; k0 ? DIM : dim); ++i) { if (dataset_get(k,i)bbox[i].high) bbox[i].high = dataset_get(k,i); } } } } /** * Create a tree node that subdivides the list of vecs from vind[first] * to vind[last]. The routine is called recursively on each sublist. * Place a pointer to this new tree node in the location pTree. * * Params: pTree = the new node to create * first = index of the first vector * last = index of the last vector */ NodePtr divideTree(const IndexType left, const IndexType right, BoundingBox& bbox) { NodePtr node = pool.allocate(); // allocate memory /* If too few exemplars remain, then make this a leaf node. */ if ( (right-left) <= m_leaf_max_size) { node->child1 = node->child2 = NULL; /* Mark as leaf node. */ node->lr.left = left; node->lr.right = right; // compute bounding-box of leaf points for (int i=0; i<(DIM>0 ? DIM : dim); ++i) { bbox[i].low = dataset_get(vind[left],i); bbox[i].high = dataset_get(vind[left],i); } for (IndexType k=left+1; k0 ? DIM : dim); ++i) { if (bbox[i].low>dataset_get(vind[k],i)) bbox[i].low=dataset_get(vind[k],i); if (bbox[i].highsub.divfeat = cutfeat; BoundingBox left_bbox(bbox); left_bbox[cutfeat].high = cutval; node->child1 = divideTree(left, left+idx, left_bbox); BoundingBox right_bbox(bbox); right_bbox[cutfeat].low = cutval; node->child2 = divideTree(left+idx, right, right_bbox); node->sub.divlow = left_bbox[cutfeat].high; node->sub.divhigh = right_bbox[cutfeat].low; for (int i=0; i<(DIM>0 ? DIM : dim); ++i) { bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low); bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high); } } return node; } void computeMinMax(IndexType* ind, IndexType count, int element, ElementType& min_elem, ElementType& max_elem) { min_elem = dataset_get(ind[0],element); max_elem = dataset_get(ind[0],element); for (IndexType i=1; imax_elem) max_elem = val; } } void middleSplit(IndexType* ind, IndexType count, IndexType& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox) { // find the largest span from the approximate bounding box ElementType max_span = bbox[0].high-bbox[0].low; cutfeat = 0; cutval = (bbox[0].high+bbox[0].low)/2; for (int i=1; i<(DIM>0 ? DIM : dim); ++i) { ElementType span = bbox[i].low-bbox[i].low; if (span>max_span) { max_span = span; cutfeat = i; cutval = (bbox[i].high+bbox[i].low)/2; } } // compute exact span on the found dimension ElementType min_elem, max_elem; computeMinMax(ind, count, cutfeat, min_elem, max_elem); cutval = (min_elem+max_elem)/2; max_span = max_elem - min_elem; // check if a dimension of a largest span exists size_t k = cutfeat; for (size_t i=0; i<(DIM>0 ? DIM : dim); ++i) { if (i==k) continue; ElementType span = bbox[i].high-bbox[i].low; if (span>max_span) { computeMinMax(ind, count, i, min_elem, max_elem); span = max_elem - min_elem; if (span>max_span) { max_span = span; cutfeat = i; cutval = (min_elem+max_elem)/2; } } } IndexType lim1, lim2; planeSplit(ind, count, cutfeat, cutval, lim1, lim2); if (lim1>count/2) index = lim1; else if (lim2(0.00001); ElementType max_span = bbox[0].high-bbox[0].low; for (int i=1; i<(DIM>0 ? DIM : dim); ++i) { ElementType span = bbox[i].high-bbox[i].low; if (span>max_span) { max_span = span; } } ElementType max_spread = -1; cutfeat = 0; for (int i=0; i<(DIM>0 ? DIM : dim); ++i) { ElementType span = bbox[i].high-bbox[i].low; if (span>(1-EPS)*max_span) { ElementType min_elem, max_elem; computeMinMax(ind, count, cutfeat, min_elem, max_elem); ElementType spread = max_elem-min_elem;; if (spread>max_spread) { cutfeat = i; max_spread = spread; } } } // split in the middle DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2; ElementType min_elem, max_elem; computeMinMax(ind, count, cutfeat, min_elem, max_elem); if (split_valmax_elem) cutval = max_elem; else cutval = split_val; IndexType lim1, lim2; planeSplit(ind, count, cutfeat, cutval, lim1, lim2); if (lim1>count/2) index = lim1; else if (lim2cutval */ void planeSplit(IndexType* ind, const IndexType count, int cutfeat, DistanceType cutval, IndexType& lim1, IndexType& lim2) { /* Move vector indices for left subtree to front of list. */ IndexType left = 0; IndexType right = count-1; for (;; ) { while (left<=right && dataset_get(ind[left],cutfeat)=cutval) --right; if (left>right || !right) break; // "!right" was added to support unsigned Index types std::swap(ind[left], ind[right]); ++left; --right; } /* If either list is empty, it means that all remaining features * are identical. Split in the middle to maintain a balanced tree. */ lim1 = left; right = count-1; for (;; ) { while (left<=right && dataset_get(ind[left],cutfeat)<=cutval) ++left; while (right && left<=right && dataset_get(ind[right],cutfeat)>cutval) --right; if (left>right || !right) break; // "!right" was added to support unsigned Index types std::swap(ind[left], ind[right]); ++left; --right; } lim2 = left; } DistanceType computeInitialDistances(const ElementType* vec, std::vector& dists) const { assert(vec); DistanceType distsq = 0.0; for (int i = 0; i < (DIM>0 ? DIM : dim); ++i) { if (vec[i] < root_bbox[i].low) { dists[i] = distance.accum_dist(vec[i], root_bbox[i].low, i); distsq += dists[i]; } if (vec[i] > root_bbox[i].high) { dists[i] = distance.accum_dist(vec[i], root_bbox[i].high, i); distsq += dists[i]; } } return distsq; } /** * Performs an exact search in the tree starting from a node. * \tparam RESULTSET Should be any ResultSet */ template void searchLevel(RESULTSET& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq, std::vector& dists, const float epsError) const { /* If this is a leaf node, then do check and return. */ if ((node->child1 == NULL)&&(node->child2 == NULL)) { //count_leaf += (node->lr.right-node->lr.left); // Removed since was neither used nor returned to the user. DistanceType worst_dist = result_set.worstDist(); for (IndexType i=node->lr.left; ilr.right; ++i) { const IndexType index = vind[i];// reorder... : i; DistanceType dist = distance(vec, index, (DIM>0 ? DIM : dim)); if (distsub.divfeat; ElementType val = vec[idx]; DistanceType diff1 = val - node->sub.divlow; DistanceType diff2 = val - node->sub.divhigh; NodePtr bestChild; NodePtr otherChild; DistanceType cut_dist; if ((diff1+diff2)<0) { bestChild = node->child1; otherChild = node->child2; cut_dist = distance.accum_dist(val, node->sub.divhigh, idx); } else { bestChild = node->child2; otherChild = node->child1; cut_dist = distance.accum_dist( val, node->sub.divlow, idx); } /* Call recursively to search next level down. */ searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError); DistanceType dst = dists[idx]; mindistsq = mindistsq + cut_dist - dst; dists[idx] = cut_dist; if (mindistsq*epsError<=result_set.worstDist()) { searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError); } dists[idx] = dst; } void saveIndex(FILE* stream) { save_value(stream, m_size); save_value(stream, dim); save_value(stream, root_bbox); save_value(stream, m_leaf_max_size); save_value(stream, vind); save_tree(stream, root_node); } void loadIndex(FILE* stream) { load_value(stream, m_size); load_value(stream, dim); load_value(stream, root_bbox); load_value(stream, m_leaf_max_size); load_value(stream, vind); load_tree(stream, root_node); } }; // class KDTree /** A simple KD-tree adaptor for working with data directly stored in an Eigen Matrix, without duplicating the data storage. * Each row in the matrix represents a point in the state space. * * Example of usage: * \code * Eigen::Matrix mat; * // Fill out "mat"... * * typedef KDTreeEigenMatrixAdaptor< Eigen::Matrix > my_kd_tree_t; * const int max_leaf = 10; * my_kd_tree_t mat_index(dimdim, mat, max_leaf ); * mat_index.index->buildIndex(); * mat_index.index->... * \endcode * * \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality for the points in the data set, allowing more compiler optimizations. * \tparam Distance The distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. * \tparam IndexType The type for indices in the KD-tree index (typically, size_t of int) */ template struct KDTreeEigenMatrixAdaptor { typedef KDTreeEigenMatrixAdaptor self_t; typedef typename MatrixType::Scalar num_t; typedef typename Distance::template traits::distance_t metric_t; typedef KDTreeSingleIndexAdaptor< metric_t,self_t,DIM,IndexType> index_t; index_t* index; //! The kd-tree index for the user to call its methods as usual with any other FLANN index. /// Constructor: takes a const ref to the matrix object with the data points KDTreeEigenMatrixAdaptor(const int dimensionality, const MatrixType &mat, const int leaf_max_size = 10) : m_data_matrix(mat) { const size_t dims = mat.cols(); if (DIM>0 && static_cast(dims)!=DIM) throw std::runtime_error("Data set dimensionality does not match the 'DIM' template argument"); index = new index_t( dims, *this /* adaptor */, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size, dims ) ); index->buildIndex(); } ~KDTreeEigenMatrixAdaptor() { delete index; } const MatrixType &m_data_matrix; /** Query for the \a num_closest closest points to a given point (entered as query_point[0:dim-1]). * Note that this is a short-cut method for index->findNeighbors(). * The user can also call index->... methods as desired. * \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface. */ inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq, const int nChecks_IGNORED = 10) const { nanoflann::KNNResultSet resultSet(num_closest); resultSet.init(out_indices, out_distances_sq); index->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); } /** @name Interface expected by KDTreeSingleIndexAdaptor * @{ */ const self_t & derived() const { return *this; } self_t & derived() { return *this; } // Must return the number of data points inline size_t kdtree_get_point_count() const { return m_data_matrix.rows(); } // Returns the distance between the vector "p1[0:size-1]" and the data point with index "idx_p2" stored in the class: inline num_t kdtree_distance(const num_t *p1, const size_t idx_p2,size_t size) const { num_t s=0; for (size_t i=0; i bool kdtree_get_bbox(BBOX &bb) const { return false; } /** @} */ }; // end of KDTreeEigenMatrixAdaptor /** @} */ /** @} */ // end of grouping } // end of NS #endif /* NANOFLANN_HPP_ */