Datasets:

Modalities:
Text
Formats:
json
Languages:
German
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
26575e0
·
verified ·
1 Parent(s): a66ae05

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +174 -62
README.md CHANGED
@@ -1,78 +1,190 @@
1
  ---
 
 
2
  language:
3
- - de
4
- multilinguality:
5
- - monolingual
6
  task_categories:
7
  - text-retrieval
8
- source_datasets:
9
- - https://github.com/lavis-nlp/GerDaLIR
10
  task_ids:
11
- - document-retrieval
12
  config_names:
13
  - corpus
14
  tags:
15
- - text-retrieval
 
16
  dataset_info:
17
- - config_name: default
18
- features:
19
- - name: query-id
20
- dtype: string
21
- - name: corpus-id
22
- dtype: string
23
- - name: score
24
- dtype: float64
25
- splits:
26
- - name: test
27
- num_examples: 14320
28
- - config_name: corpus
29
- features:
30
- - name: _id
31
- dtype: string
32
- - name: title
33
- dtype: string
34
- - name: text
35
- dtype: string
36
- splits:
37
- - name: corpus
38
- num_examples: 9969
39
- - config_name: queries
40
- features:
41
- - name: _id
42
- dtype: string
43
- - name: text
44
- dtype: string
45
- splits:
46
- - name: queries
47
- num_examples: 12234
48
  configs:
49
- - config_name: default
50
- data_files:
51
- - split: test
52
- path: qrels/test.jsonl
53
- - config_name: corpus
54
- data_files:
55
- - split: corpus
56
- path: corpus.jsonl
57
- - config_name: queries
58
- data_files:
59
- - split: queries
60
- path: queries.jsonl
61
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- **GerDaLIRSmall**
64
 
65
- - Original link: https://github.com/lavis-nlp/GerDaLIR
66
- - The dataset consists of documents, passages and relevance labels in German.
67
- - The corpus set consists of a collection of legal documents. In contrast to the original dataset, only documents that have corresponding queries in the query set are chosen to create a smaller corpus for evaluation purposes.
68
- - The query set comprises passages that refer to one or more documents within the corpus set.
69
 
70
- **Usage**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  ```
72
- import datasets
73
 
74
- # Download the dataset
75
- queries = datasets.load_dataset("mteb/GerDaLIRSmall", "queries")
76
- documents = datasets.load_dataset("mteb/GerDaLIRSmall", "corpus")
77
- pair_labels = datasets.load_dataset("mteb/GerDaLIRSmall", "default")
78
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
  language:
5
+ - deu
6
+ license: mit
7
+ multilinguality: monolingual
8
  task_categories:
9
  - text-retrieval
 
 
10
  task_ids:
11
+ - Article retrieval
12
  config_names:
13
  - corpus
14
  tags:
15
+ - mteb
16
+ - text
17
  dataset_info:
18
+ - config_name: default
19
+ features:
20
+ - name: query-id
21
+ dtype: string
22
+ - name: corpus-id
23
+ dtype: string
24
+ - name: score
25
+ dtype: float64
26
+ splits:
27
+ - name: test
28
+ num_examples: 14320
29
+ - config_name: corpus
30
+ features:
31
+ - name: _id
32
+ dtype: string
33
+ - name: title
34
+ dtype: string
35
+ - name: text
36
+ dtype: string
37
+ splits:
38
+ - name: corpus
39
+ num_examples: 9969
40
+ - config_name: queries
41
+ features:
42
+ - name: _id
43
+ dtype: string
44
+ - name: text
45
+ dtype: string
46
+ splits:
47
+ - name: queries
48
+ num_examples: 12234
49
  configs:
50
+ - config_name: default
51
+ data_files:
52
+ - split: test
53
+ path: qrels/test.jsonl
54
+ - config_name: corpus
55
+ data_files:
56
+ - split: corpus
57
+ path: corpus.jsonl
58
+ - config_name: queries
59
+ data_files:
60
+ - split: queries
61
+ path: queries.jsonl
62
  ---
63
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
64
+
65
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
66
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">GerDaLIRSmall</h1>
67
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
68
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
69
+ </div>
70
+
71
+ The dataset consists of documents, passages and relevance labels in German. In contrast to the original dataset, only documents that have corresponding queries in the query set are chosen to create a smaller corpus for evaluation purposes.
72
+
73
+ | | |
74
+ |---------------|---------------------------------------------|
75
+ | Task category | t2t |
76
+ | Domains | Legal, Written |
77
+ | Reference | https://github.com/lavis-nlp/GerDaLIR |
78
+
79
+
80
+ ## How to evaluate on this task
81
+
82
+ You can evaluate an embedding model on this dataset using the following code:
83
+
84
+ ```python
85
+ import mteb
86
+
87
+ task = mteb.get_tasks(["GerDaLIRSmall"])
88
+ evaluator = mteb.MTEB(task)
89
+
90
+ model = mteb.get_model(YOUR_MODEL)
91
+ evaluator.run(model)
92
+ ```
93
+
94
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
95
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
96
+
97
+ ## Citation
98
 
99
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
100
 
101
+ ```bibtex
 
 
 
102
 
103
+ @inproceedings{wrzalik-krechel-2021-gerdalir,
104
+ abstract = {We present GerDaLIR, a German Dataset for Legal Information Retrieval based on case documents from the open legal information platform Open Legal Data. The dataset consists of 123K queries, each labelled with at least one relevant document in a collection of 131K case documents. We conduct several baseline experiments including BM25 and a state-of-the-art neural re-ranker. With our dataset, we aim to provide a standardized benchmark for German LIR and promote open research in this area. Beyond that, our dataset comprises sufficient training data to be used as a downstream task for German or multilingual language models.},
105
+ address = {Punta Cana, Dominican Republic},
106
+ author = {Wrzalik, Marco and
107
+ Krechel, Dirk},
108
+ booktitle = {Proceedings of the Natural Legal Language Processing Workshop 2021},
109
+ month = nov,
110
+ pages = {123--128},
111
+ publisher = {Association for Computational Linguistics},
112
+ title = {{G}er{D}a{LIR}: A {G}erman Dataset for Legal Information Retrieval},
113
+ url = {https://aclanthology.org/2021.nllp-1.13},
114
+ year = {2021},
115
+ }
116
+
117
+
118
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
119
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
120
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
121
+ publisher = {arXiv},
122
+ journal={arXiv preprint arXiv:2502.13595},
123
+ year={2025},
124
+ url={https://arxiv.org/abs/2502.13595},
125
+ doi = {10.48550/arXiv.2502.13595},
126
+ }
127
+
128
+ @article{muennighoff2022mteb,
129
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
130
+ title = {MTEB: Massive Text Embedding Benchmark},
131
+ publisher = {arXiv},
132
+ journal={arXiv preprint arXiv:2210.07316},
133
+ year = {2022}
134
+ url = {https://arxiv.org/abs/2210.07316},
135
+ doi = {10.48550/ARXIV.2210.07316},
136
+ }
137
  ```
 
138
 
139
+ # Dataset Statistics
140
+ <details>
141
+ <summary> Dataset Statistics</summary>
142
+
143
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
144
+
145
+ ```python
146
+ import mteb
147
+
148
+ task = mteb.get_task("GerDaLIRSmall")
149
+
150
+ desc_stats = task.metadata.descriptive_stats
151
+ ```
152
+
153
+ ```json
154
+ {
155
+ "test": {
156
+ "num_samples": 22203,
157
+ "number_of_characters": 209081381,
158
+ "num_documents": 9969,
159
+ "min_document_length": 151,
160
+ "average_document_length": 19707.823653325308,
161
+ "max_document_length": 427235,
162
+ "unique_documents": 9969,
163
+ "num_queries": 12234,
164
+ "min_query_length": 150,
165
+ "average_query_length": 1031.0680889324833,
166
+ "max_query_length": 23560,
167
+ "unique_queries": 12234,
168
+ "none_queries": 0,
169
+ "num_relevant_docs": 14320,
170
+ "min_relevant_docs_per_query": 1,
171
+ "average_relevant_docs_per_query": 1.1705084191597188,
172
+ "max_relevant_docs_per_query": 9,
173
+ "unique_relevant_docs": 9969,
174
+ "num_instructions": null,
175
+ "min_instruction_length": null,
176
+ "average_instruction_length": null,
177
+ "max_instruction_length": null,
178
+ "unique_instructions": null,
179
+ "num_top_ranked": null,
180
+ "min_top_ranked_per_query": null,
181
+ "average_top_ranked_per_query": null,
182
+ "max_top_ranked_per_query": null
183
+ }
184
+ }
185
+ ```
186
+
187
+ </details>
188
+
189
+ ---
190
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*