Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
Dask
License:
Samoed commited on
Commit
4537acd
·
verified ·
1 Parent(s): 1739dc1

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +185 -29
README.md CHANGED
@@ -1,17 +1,23 @@
1
  ---
2
- annotations_creators: []
 
3
  language_creators: []
4
  language:
5
- - de
6
- - en
7
- - fr
8
- - ru
9
- - zh
10
- license:
11
- - cc-by-sa-4.0
12
- multilinguality:
13
- - monolingual
14
- - multilingual
 
 
 
 
 
15
  pretty_name: MTEB Benchmark
16
  configs:
17
  - config_name: default
@@ -34,28 +40,178 @@ configs:
34
  data_files:
35
  - path: test/zh-en.jsonl.gz
36
  split: test
 
 
 
37
  ---
 
38
 
39
- # Dataset Card for MTEB Benchmark
 
 
 
 
40
 
41
- ## Dataset Description
42
 
43
- - **Homepage:** https://github.com/embeddings-benchmark/mteb-draft
44
- - **Repository:** https://github.com/embeddings-benchmark/mteb-draft
45
- - **Paper:** soon
46
- - **Leaderboard:** https://docs.google.com/spreadsheets/d/14P8bdEzsIgTGGlp9oOlMw-THrQbn2fYfZEkZV4NUBos
47
- - **Point of Contact:** [email protected]
48
 
49
- ### Dataset Summary
50
 
51
- MTEB is a heterogeneous benchmark that has been built from diverse tasks:
52
- * BitextMining: [BUCC](https://comparable.limsi.fr/bucc2018/bucc2018-task.html), [Tatoeba](https://github.com/facebookresearch/LASER/tree/main/data/tatoeba/v1)
53
- * Classification: [AmazonCounterfactualClassification](https://arxiv.org/abs/2104.06893), [AmazonPolarityClassification](https://dl.acm.org/doi/10.1145/2507157.2507163), [AmazonReviewsClassification](https://arxiv.org/abs/2010.02573), [Banking77Classification](https://arxiv.org/abs/2003.04807), [EmotionClassification](https://www.aclweb.org/anthology/D18-1404), [ImdbClassification](http://www.aclweb.org/anthology/P11-1015), [MassiveIntentClassification](https://arxiv.org/abs/2204.08582#:~:text=MASSIVE%20contains%201M%20realistic%2C%20parallel,diverse%20languages%20from%2029%20genera.), [MassiveScenarioClassification](https://arxiv.org/abs/2204.08582#:~:text=MASSIVE%20contains%201M%20realistic%2C%20parallel,diverse%20languages%20from%2029%20genera.), [MTOPDomainClassification](https://arxiv.org/pdf/2008.09335.pdf), [MTOPIntentClassification](https://arxiv.org/pdf/2008.09335.pdf), [ToxicConversationsClassification](https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification/overview), [TweetSentimentExtractionClassification](https://www.kaggle.com/competitions/tweet-sentiment-extraction/overview)
54
- * Clustering: [ArxivClusteringP2P](https://www.kaggle.com/Cornell-University/arxiv), [ArxivClusteringS2S](https://www.kaggle.com/Cornell-University/arxiv), [BiorxivClusteringP2P](https://api.biorxiv.org/), [BiorxivClusteringS2S](https://api.biorxiv.org/), [MedrxivClusteringP2P](https://api.biorxiv.org/), [MedrxivClusteringS2S](https://api.biorxiv.org/), [RedditClustering](https://arxiv.org/abs/2104.07081), [RedditClusteringP2P](https://huggingface.co/datasets/sentence-transformers/reddit-title-body), [StackExchangeClustering](https://arxiv.org/abs/2104.07081), [StackExchangeClusteringP2P](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl), [TwentyNewsgroupsClustering](https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html)
55
- * Pair Classification: [SprintDuplicateQuestions](https://www.aclweb.org/anthology/D18-1131/), [TwitterSemEval2015](https://alt.qcri.org/semeval2015/task1/), [TwitterURLCorpus](https://languagenet.github.io/)
56
- * Reranking: [AskUbuntuDupQuestions](https://github.com/taolei87/askubuntu), [MindSmallReranking](https://www.microsoft.com/en-us/research/uploads/prod/2019/03/nl4se18LinkSO.pdf), [SciDocs](https://allenai.org/data/scidocs), [StackOverflowDupQuestions](https://www.microsoft.com/en-us/research/uploads/prod/2019/03/nl4se18LinkSO.pdf)
57
- * Retrieval: [ArguAna](http://argumentation.bplaced.net/arguana/data), [ClimateFEVER](https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html), [CQADupstackRetrieval](http://nlp.cis.unimelb.edu.au/resources/cqadupstack/), [DBPedia](https://github.com/iai-group/DBpedia-Entity/), [FEVER](https://fever.ai/), [FiQA2018](https://sites.google.com/view/fiqa/), [HotpotQA](https://hotpotqa.github.io/), [MSMARCO](https://microsoft.github.io/msmarco/), [MSMARCOv2](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html), [NFCorpus](https://www.cl.uni-heidelberg.de/statnlpgroup/nfcorpus/), [NQ](https://ai.google.com/research/NaturalQuestions/), [QuoraRetrieval](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs), [SCIDOCS](https://allenai.org/data/scidocs), [SciFact](https://github.com/allenai/scifact), [Touche2020](https://webis.de/events/touche-20/shared-task-1.html), [TRECCOVID](https://ir.nist.gov/covidSubmit/index.html)
58
- * STS: [BIOSSES](https://tabilab.cmpe.boun.edu.tr/BIOSSES/DataSet.html), [SICK-R](https://www.aclweb.org/anthology/S14-2001.pdf), [STS12](https://www.aclweb.org/anthology/S12-1051.pdf), [STS13](https://www.aclweb.org/anthology/S13-1004/), [STS14](http://alt.qcri.org/semeval2014/task10/), [STS15](http://alt.qcri.org/semeval2015/task2/), [STS16](http://alt.qcri.org/semeval2016/task1/), [STS17](http://alt.qcri.org/semeval2016/task1/), [STS22](https://competitions.codalab.org/competitions/33835), [STSBenchmark](http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark)
59
- * Summarization: [SummEval](https://tabilab.cmpe.boun.edu.tr/BIOSSES/DataSet.html)
60
 
61
- All these datasets have been preprocessed and can be used for your experiments.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - human-annotated
4
  language_creators: []
5
  language:
6
+ - deu
7
+ - eng
8
+ - fra
9
+ - eng
10
+ - rus
11
+ - eng
12
+ - cmn
13
+ - eng
14
+ license: unknown
15
+ multilinguality: translated
16
+ source_datasets:
17
+ - mteb/bucc-bitext-mining
18
+ task_categories:
19
+ - translation
20
+ task_ids: []
21
  pretty_name: MTEB Benchmark
22
  configs:
23
  - config_name: default
 
40
  data_files:
41
  - path: test/zh-en.jsonl.gz
42
  split: test
43
+ tags:
44
+ - mteb
45
+ - text
46
  ---
47
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
48
 
49
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
50
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">BUCC.v2</h1>
51
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
52
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
53
+ </div>
54
 
55
+ BUCC bitext mining dataset
56
 
57
+ | | |
58
+ |---------------|---------------------------------------------|
59
+ | Task category | t2t |
60
+ | Domains | Written |
61
+ | Reference | https://comparable.limsi.fr/bucc2018/bucc2018-task.html |
62
 
 
63
 
64
+ ## How to evaluate on this task
 
 
 
 
 
 
 
 
65
 
66
+ You can evaluate an embedding model on this dataset using the following code:
67
+
68
+ ```python
69
+ import mteb
70
+
71
+ task = mteb.get_tasks(["BUCC.v2"])
72
+ evaluator = mteb.MTEB(task)
73
+
74
+ model = mteb.get_model(YOUR_MODEL)
75
+ evaluator.run(model)
76
+ ```
77
+
78
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
79
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
80
+
81
+ ## Citation
82
+
83
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
84
+
85
+ ```bibtex
86
+
87
+ @inproceedings{zweigenbaum-etal-2017-overview,
88
+ abstract = {This paper presents the BUCC 2017 shared task on parallel sentence extraction from comparable corpora. It recalls the design of the datasets, presents their final construction and statistics and the methods used to evaluate system results. 13 runs were submitted to the shared task by 4 teams, covering three of the four proposed language pairs: French-English (7 runs), German-English (3 runs), and Chinese-English (3 runs). The best F-scores as measured against the gold standard were 0.84 (German-English), 0.80 (French-English), and 0.43 (Chinese-English). Because of the design of the dataset, in which not all gold parallel sentence pairs are known, these are only minimum values. We examined manually a small sample of the false negative sentence pairs for the most precise French-English runs and estimated the number of parallel sentence pairs not yet in the provided gold standard. Adding them to the gold standard leads to revised estimates for the French-English F-scores of at most +1.5pt. This suggests that the BUCC 2017 datasets provide a reasonable approximate evaluation of the parallel sentence spotting task.},
89
+ address = {Vancouver, Canada},
90
+ author = {Zweigenbaum, Pierre and
91
+ Sharoff, Serge and
92
+ Rapp, Reinhard},
93
+ booktitle = {Proceedings of the 10th Workshop on Building and Using Comparable Corpora},
94
+ doi = {10.18653/v1/W17-2512},
95
+ editor = {Sharoff, Serge and
96
+ Zweigenbaum, Pierre and
97
+ Rapp, Reinhard},
98
+ month = aug,
99
+ pages = {60--67},
100
+ publisher = {Association for Computational Linguistics},
101
+ title = {Overview of the Second {BUCC} Shared Task: Spotting Parallel Sentences in Comparable Corpora},
102
+ url = {https://aclanthology.org/W17-2512},
103
+ year = {2017},
104
+ }
105
+
106
+
107
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
108
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
109
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
110
+ publisher = {arXiv},
111
+ journal={arXiv preprint arXiv:2502.13595},
112
+ year={2025},
113
+ url={https://arxiv.org/abs/2502.13595},
114
+ doi = {10.48550/arXiv.2502.13595},
115
+ }
116
+
117
+ @article{muennighoff2022mteb,
118
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
119
+ title = {MTEB: Massive Text Embedding Benchmark},
120
+ publisher = {arXiv},
121
+ journal={arXiv preprint arXiv:2210.07316},
122
+ year = {2022}
123
+ url = {https://arxiv.org/abs/2210.07316},
124
+ doi = {10.48550/ARXIV.2210.07316},
125
+ }
126
+ ```
127
+
128
+ # Dataset Statistics
129
+ <details>
130
+ <summary> Dataset Statistics</summary>
131
+
132
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
133
+
134
+ ```python
135
+ import mteb
136
+
137
+ task = mteb.get_task("BUCC.v2")
138
+
139
+ desc_stats = task.metadata.descriptive_stats
140
+ ```
141
+
142
+ ```json
143
+ {
144
+ "test": {
145
+ "num_samples": 35000,
146
+ "number_of_characters": 6640032,
147
+ "unique_pairs": 34978,
148
+ "min_sentence1_length": 16,
149
+ "average_sentence1_length": 99.10931428571429,
150
+ "max_sentence1_length": 204,
151
+ "unique_sentence1": 34978,
152
+ "min_sentence2_length": 42,
153
+ "average_sentence2_length": 90.60588571428572,
154
+ "max_sentence2_length": 159,
155
+ "unique_sentence2": 25306,
156
+ "hf_subset_descriptive_stats": {
157
+ "de-en": {
158
+ "num_samples": 9580,
159
+ "number_of_characters": 1919197,
160
+ "unique_pairs": 9573,
161
+ "min_sentence1_length": 50,
162
+ "average_sentence1_length": 109.07974947807934,
163
+ "max_sentence1_length": 204,
164
+ "unique_sentence1": 9573,
165
+ "min_sentence2_length": 46,
166
+ "average_sentence2_length": 91.25396659707724,
167
+ "max_sentence2_length": 155,
168
+ "unique_sentence2": 9570
169
+ },
170
+ "fr-en": {
171
+ "num_samples": 9086,
172
+ "number_of_characters": 1677545,
173
+ "unique_pairs": 9081,
174
+ "min_sentence1_length": 43,
175
+ "average_sentence1_length": 99.31785163988553,
176
+ "max_sentence1_length": 174,
177
+ "unique_sentence1": 9081,
178
+ "min_sentence2_length": 42,
179
+ "average_sentence2_length": 85.3117983711204,
180
+ "max_sentence2_length": 159,
181
+ "unique_sentence2": 9076
182
+ },
183
+ "ru-en": {
184
+ "num_samples": 14435,
185
+ "number_of_characters": 2808206,
186
+ "unique_pairs": 14425,
187
+ "min_sentence1_length": 40,
188
+ "average_sentence1_length": 101.6593003117423,
189
+ "max_sentence1_length": 186,
190
+ "unique_sentence1": 14425,
191
+ "min_sentence2_length": 45,
192
+ "average_sentence2_length": 92.88216141323173,
193
+ "max_sentence2_length": 159,
194
+ "unique_sentence2": 14424
195
+ },
196
+ "zh-en": {
197
+ "num_samples": 1899,
198
+ "number_of_characters": 235084,
199
+ "unique_pairs": 1899,
200
+ "min_sentence1_length": 16,
201
+ "average_sentence1_length": 28.429699842022117,
202
+ "max_sentence1_length": 40,
203
+ "unique_sentence1": 1899,
204
+ "min_sentence2_length": 48,
205
+ "average_sentence2_length": 95.3638757240653,
206
+ "max_sentence2_length": 159,
207
+ "unique_sentence2": 1899
208
+ }
209
+ }
210
+ }
211
+ }
212
+ ```
213
+
214
+ </details>
215
+
216
+ ---
217
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*