--- library_name: transformers license: mit base_model: jhu-clsp/mmBERT-base tags: - multi_label_classification - generated_from_trainer model-index: - name: finetuned_model_emotion_detection results: [] --- # finetuned_model_emotion_detection This model is a fine-tuned version of [jhu-clsp/mmBERT-base](https://huggingface.co/jhu-clsp/mmBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3474 - F1 Macro: 0.5055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 223 | 0.2843 | 0.4052 | | No log | 2.0 | 446 | 0.2643 | 0.4646 | | 0.2521 | 3.0 | 669 | 0.3474 | 0.5055 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu126 - Datasets 4.2.0 - Tokenizers 0.22.1