Upload 2 files
Browse files
iter_80000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b67e032728959023a14b7a6a4831009367d58331cd2d188fa6540e7e40a05121
|
| 3 |
+
size 975633422
|
upernet_swin_small_patch4_window7_512x1024_80k.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
| 2 |
+
model = dict(
|
| 3 |
+
type='EncoderDecoder',
|
| 4 |
+
pretrained='pretrained/swin_small_patch4_window7_224.pth',
|
| 5 |
+
backbone=dict(
|
| 6 |
+
type='SwinTransformer',
|
| 7 |
+
embed_dim=96,
|
| 8 |
+
depths=[2, 2, 18, 2],
|
| 9 |
+
num_heads=[3, 6, 12, 24],
|
| 10 |
+
window_size=7,
|
| 11 |
+
mlp_ratio=4.0,
|
| 12 |
+
qkv_bias=True,
|
| 13 |
+
qk_scale=None,
|
| 14 |
+
drop_rate=0.0,
|
| 15 |
+
attn_drop_rate=0.0,
|
| 16 |
+
drop_path_rate=0.3,
|
| 17 |
+
ape=False,
|
| 18 |
+
patch_norm=True,
|
| 19 |
+
out_indices=(0, 1, 2, 3),
|
| 20 |
+
use_checkpoint=False),
|
| 21 |
+
decode_head=dict(
|
| 22 |
+
type='UPerHead',
|
| 23 |
+
in_channels=[96, 192, 384, 768],
|
| 24 |
+
in_index=[0, 1, 2, 3],
|
| 25 |
+
pool_scales=(1, 2, 3, 6),
|
| 26 |
+
channels=512,
|
| 27 |
+
dropout_ratio=0.1,
|
| 28 |
+
num_classes=104,
|
| 29 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
| 30 |
+
align_corners=False,
|
| 31 |
+
loss_decode=dict(
|
| 32 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
| 33 |
+
auxiliary_head=dict(
|
| 34 |
+
type='FCNHead',
|
| 35 |
+
in_channels=384,
|
| 36 |
+
in_index=2,
|
| 37 |
+
channels=256,
|
| 38 |
+
num_convs=1,
|
| 39 |
+
concat_input=False,
|
| 40 |
+
dropout_ratio=0.1,
|
| 41 |
+
num_classes=104,
|
| 42 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
| 43 |
+
align_corners=False,
|
| 44 |
+
loss_decode=dict(
|
| 45 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
| 46 |
+
train_cfg=dict(),
|
| 47 |
+
test_cfg=dict(mode='whole'))
|
| 48 |
+
dataset_type = 'CustomDataset'
|
| 49 |
+
data_root = './data/FoodSeg103/Images/'
|
| 50 |
+
img_norm_cfg = dict(
|
| 51 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
| 52 |
+
crop_size = (512, 1024)
|
| 53 |
+
train_pipeline = [
|
| 54 |
+
dict(type='LoadImageFromFile'),
|
| 55 |
+
dict(type='LoadAnnotations'),
|
| 56 |
+
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
| 57 |
+
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
|
| 58 |
+
dict(type='RandomFlip', prob=0.5),
|
| 59 |
+
dict(type='PhotoMetricDistortion'),
|
| 60 |
+
dict(
|
| 61 |
+
type='Normalize',
|
| 62 |
+
mean=[123.675, 116.28, 103.53],
|
| 63 |
+
std=[58.395, 57.12, 57.375],
|
| 64 |
+
to_rgb=True),
|
| 65 |
+
dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=255),
|
| 66 |
+
dict(type='DefaultFormatBundle'),
|
| 67 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
| 68 |
+
]
|
| 69 |
+
test_pipeline = [
|
| 70 |
+
dict(type='LoadImageFromFile'),
|
| 71 |
+
dict(
|
| 72 |
+
type='MultiScaleFlipAug',
|
| 73 |
+
img_scale=(2048, 1024),
|
| 74 |
+
flip=False,
|
| 75 |
+
transforms=[
|
| 76 |
+
dict(type='Resize', keep_ratio=True),
|
| 77 |
+
dict(type='RandomFlip'),
|
| 78 |
+
dict(
|
| 79 |
+
type='Normalize',
|
| 80 |
+
mean=[123.675, 116.28, 103.53],
|
| 81 |
+
std=[58.395, 57.12, 57.375],
|
| 82 |
+
to_rgb=True),
|
| 83 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 84 |
+
dict(type='Collect', keys=['img'])
|
| 85 |
+
])
|
| 86 |
+
]
|
| 87 |
+
data = dict(
|
| 88 |
+
samples_per_gpu=2,
|
| 89 |
+
workers_per_gpu=2,
|
| 90 |
+
train=dict(
|
| 91 |
+
type='CustomDataset',
|
| 92 |
+
data_root='./data/FoodSeg103/Images/',
|
| 93 |
+
img_dir='img_dir/train',
|
| 94 |
+
ann_dir='ann_dir/train',
|
| 95 |
+
pipeline=[
|
| 96 |
+
dict(type='LoadImageFromFile'),
|
| 97 |
+
dict(type='LoadAnnotations'),
|
| 98 |
+
dict(
|
| 99 |
+
type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
| 100 |
+
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
|
| 101 |
+
dict(type='RandomFlip', prob=0.5),
|
| 102 |
+
dict(type='PhotoMetricDistortion'),
|
| 103 |
+
dict(
|
| 104 |
+
type='Normalize',
|
| 105 |
+
mean=[123.675, 116.28, 103.53],
|
| 106 |
+
std=[58.395, 57.12, 57.375],
|
| 107 |
+
to_rgb=True),
|
| 108 |
+
dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=255),
|
| 109 |
+
dict(type='DefaultFormatBundle'),
|
| 110 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
| 111 |
+
]),
|
| 112 |
+
val=dict(
|
| 113 |
+
type='CustomDataset',
|
| 114 |
+
data_root='./data/FoodSeg103/Images/',
|
| 115 |
+
img_dir='img_dir/test',
|
| 116 |
+
ann_dir='ann_dir/test',
|
| 117 |
+
pipeline=[
|
| 118 |
+
dict(type='LoadImageFromFile'),
|
| 119 |
+
dict(
|
| 120 |
+
type='MultiScaleFlipAug',
|
| 121 |
+
img_scale=(2048, 1024),
|
| 122 |
+
flip=False,
|
| 123 |
+
transforms=[
|
| 124 |
+
dict(type='Resize', keep_ratio=True),
|
| 125 |
+
dict(type='RandomFlip'),
|
| 126 |
+
dict(
|
| 127 |
+
type='Normalize',
|
| 128 |
+
mean=[123.675, 116.28, 103.53],
|
| 129 |
+
std=[58.395, 57.12, 57.375],
|
| 130 |
+
to_rgb=True),
|
| 131 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 132 |
+
dict(type='Collect', keys=['img'])
|
| 133 |
+
])
|
| 134 |
+
]),
|
| 135 |
+
test=dict(
|
| 136 |
+
type='CustomDataset',
|
| 137 |
+
data_root='./data/FoodSeg103/Images/',
|
| 138 |
+
img_dir='img_dir/test',
|
| 139 |
+
ann_dir='ann_dir/test',
|
| 140 |
+
pipeline=[
|
| 141 |
+
dict(type='LoadImageFromFile'),
|
| 142 |
+
dict(
|
| 143 |
+
type='MultiScaleFlipAug',
|
| 144 |
+
img_scale=(2048, 1024),
|
| 145 |
+
flip=False,
|
| 146 |
+
transforms=[
|
| 147 |
+
dict(type='Resize', keep_ratio=True),
|
| 148 |
+
dict(type='RandomFlip'),
|
| 149 |
+
dict(
|
| 150 |
+
type='Normalize',
|
| 151 |
+
mean=[123.675, 116.28, 103.53],
|
| 152 |
+
std=[58.395, 57.12, 57.375],
|
| 153 |
+
to_rgb=True),
|
| 154 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 155 |
+
dict(type='Collect', keys=['img'])
|
| 156 |
+
])
|
| 157 |
+
]))
|
| 158 |
+
log_config = dict(
|
| 159 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
| 160 |
+
dist_params = dict(backend='nccl')
|
| 161 |
+
log_level = 'INFO'
|
| 162 |
+
load_from = None
|
| 163 |
+
resume_from = None
|
| 164 |
+
workflow = [('train', 1)]
|
| 165 |
+
cudnn_benchmark = True
|
| 166 |
+
optimizer = dict(
|
| 167 |
+
type='AdamW',
|
| 168 |
+
lr=6e-05,
|
| 169 |
+
betas=(0.9, 0.999),
|
| 170 |
+
weight_decay=0.01,
|
| 171 |
+
paramwise_cfg=dict(
|
| 172 |
+
custom_keys=dict(
|
| 173 |
+
absolute_pos_embed=dict(decay_mult=0.0),
|
| 174 |
+
relative_position_bias_table=dict(decay_mult=0.0),
|
| 175 |
+
norm=dict(decay_mult=0.0))))
|
| 176 |
+
optimizer_config = dict()
|
| 177 |
+
lr_config = dict(
|
| 178 |
+
policy='poly',
|
| 179 |
+
warmup='linear',
|
| 180 |
+
warmup_iters=1500,
|
| 181 |
+
warmup_ratio=1e-06,
|
| 182 |
+
power=1.0,
|
| 183 |
+
min_lr=0.0,
|
| 184 |
+
by_epoch=False)
|
| 185 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
| 186 |
+
checkpoint_config = dict(by_epoch=False, interval=8000)
|
| 187 |
+
evaluation = dict(interval=8000, metric='mIoU')
|
| 188 |
+
work_dir = './work_dirs/upernet_swin_small_patch4_window7_512x1024_80k'
|
| 189 |
+
gpu_ids = range(0, 1)
|