new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 13

Digital Red Queen: Adversarial Program Evolution in Core War with LLMs

Large language models (LLMs) are increasingly being used to evolve solutions to problems in many domains, in a process inspired by biological evolution. However, unlike biological evolution, most LLM-evolution frameworks are formulated as static optimization problems, overlooking the open-ended adversarial dynamics that characterize real-world evolutionary processes. Here, we study Digital Red Queen (DRQ), a simple self-play algorithm that embraces these so-called "Red Queen" dynamics via continual adaptation to a changing objective. DRQ uses an LLM to evolve assembly-like programs, called warriors, which compete against each other for control of a virtual machine in the game of Core War, a Turing-complete environment studied in artificial life and connected to cybersecurity. In each round of DRQ, the model evolves a new warrior to defeat all previous ones, producing a sequence of adapted warriors. Over many rounds, we observe that warriors become increasingly general (relative to a set of held-out human warriors). Interestingly, warriors also become less behaviorally diverse across independent runs, indicating a convergence pressure toward a general-purpose behavioral strategy, much like convergent evolution in nature. This result highlights a potential value of shifting from static objectives to dynamic Red Queen objectives. Our work positions Core War as a rich, controllable sandbox for studying adversarial adaptation in artificial systems and for evaluating LLM-based evolution methods. More broadly, the simplicity and effectiveness of DRQ suggest that similarly minimal self-play approaches could prove useful in other more practical multi-agent adversarial domains, like real-world cybersecurity or combating drug resistance.

  • 7 authors
·
Jan 6

Early warning signals: The charted and uncharted territories

The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The potential to identify early warning signals that would allow researchers and managers to predict such events before they happen has therefore been an invaluable discovery that offers a way forward in spite of such seemingly unpredictable behavior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals in advance of a transition in certain contexts. Here we describe the pattern emerging as research continues to explore just how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid regime shifts, a pattern of 'critical slowing down' that can be used to detect the approaching shift, and a mechanism of bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that not all systems that show regime shifts exhibit critical slowing down, or vice versa. Even when systems exhibit critical slowing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlight the need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down, (b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel system; bearing in mind that a positive indication for some systems is a negative indication in others, and (c) statistical methods that can distinguish between signatures of early warning behaviors and noise.

  • 3 authors
·
May 29, 2013

Identity-Preserving Video Dubbing Using Motion Warping

Video dubbing aims to synthesize realistic, lip-synced videos from a reference video and a driving audio signal. Although existing methods can accurately generate mouth shapes driven by audio, they often fail to preserve identity-specific features, largely because they do not effectively capture the nuanced interplay between audio cues and the visual attributes of reference identity . As a result, the generated outputs frequently lack fidelity in reproducing the unique textural and structural details of the reference identity. To address these limitations, we propose IPTalker, a novel and robust framework for video dubbing that achieves seamless alignment between driving audio and reference identity while ensuring both lip-sync accuracy and high-fidelity identity preservation. At the core of IPTalker is a transformer-based alignment mechanism designed to dynamically capture and model the correspondence between audio features and reference images, thereby enabling precise, identity-aware audio-visual integration. Building on this alignment, a motion warping strategy further refines the results by spatially deforming reference images to match the target audio-driven configuration. A dedicated refinement process then mitigates occlusion artifacts and enhances the preservation of fine-grained textures, such as mouth details and skin features. Extensive qualitative and quantitative evaluations demonstrate that IPTalker consistently outperforms existing approaches in terms of realism, lip synchronization, and identity retention, establishing a new state of the art for high-quality, identity-consistent video dubbing.

  • 8 authors
·
Jan 8, 2025

Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems

The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence, paving the way for advanced intelligent agents capable of sophisticated reasoning, robust perception, and versatile action across diverse domains. As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges. This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture that integrates principles from cognitive science, neuroscience, and computational research. We structure our exploration into four interconnected parts. First, we delve into the modular foundation of intelligent agents, systematically mapping their cognitive, perceptual, and operational modules onto analogous human brain functionalities, and elucidating core components such as memory, world modeling, reward processing, and emotion-like systems. Second, we discuss self-enhancement and adaptive evolution mechanisms, exploring how agents autonomously refine their capabilities, adapt to dynamic environments, and achieve continual learning through automated optimization paradigms, including emerging AutoML and LLM-driven optimization strategies. Third, we examine collaborative and evolutionary multi-agent systems, investigating the collective intelligence emerging from agent interactions, cooperation, and societal structures, highlighting parallels to human social dynamics. Finally, we address the critical imperative of building safe, secure, and beneficial AI systems, emphasizing intrinsic and extrinsic security threats, ethical alignment, robustness, and practical mitigation strategies necessary for trustworthy real-world deployment.

  • 47 authors
·
Mar 31, 2025 8

Improving Long-Range Interactions in Graph Neural Simulators via Hamiltonian Dynamics

Learning to simulate complex physical systems from data has emerged as a promising way to overcome the limitations of traditional numerical solvers, which often require prohibitive computational costs for high-fidelity solutions. Recent Graph Neural Simulators (GNSs) accelerate simulations by learning dynamics on graph-structured data, yet often struggle to capture long-range interactions and suffer from error accumulation under autoregressive rollouts. To address these challenges, we propose Information-preserving Graph Neural Simulators (IGNS), a graph-based neural simulator built on the principles of Hamiltonian dynamics. This structure guarantees preservation of information across the graph, while extending to port-Hamiltonian systems allows the model to capture a broader class of dynamics, including non-conservative effects. IGNS further incorporates a warmup phase to initialize global context, geometric encoding to handle irregular meshes, and a multi-step training objective that facilitates PDE matching, where the trajectory produced by integrating the port-Hamiltonian core aligns with the ground-truth trajectory, thereby reducing rollout error. To evaluate these properties systematically, we introduce new benchmarks that target long-range dependencies and challenging external forcing scenarios. Across all tasks, IGNS consistently outperforms state-of-the-art GNSs, achieving higher accuracy and stability under challenging and complex dynamical systems. Our project page: https://thobotics.github.io/neural_pde_matching.

  • 7 authors
·
Nov 11, 2025

Phase Transition for Budgeted Multi-Agent Synergy

Multi-agent systems can improve reliability, yet under a fixed inference budget they often help, saturate, or even collapse. We develop a minimal and calibratable theory that predicts these regimes from three binding constraints of modern agent stacks: finite context windows, lossy inter-agent communication, and shared failures among similar agents. Each leaf agent is summarized by a compute-performance scaling exponent β; communication is captured by a message-length fidelity curve γ(m); dependence is captured by an effective shared-error correlation ρ; and a context window W imposes hard fan-in limits that make hierarchy necessary. For binary success/failure tasks with majority aggregation, we prove a sharp phase transition for deep b-ary trees with correlated inputs and lossy communication: a single scalar α_ρ (combining γ(m), ρ, and fan-in b) determines whether weak signal is amplified to a nontrivial fixed point or washed out to chance. In the amplifying regime, we derive an organization exponent s and show that budgeted synergy, i.e., outperforming the best single agent under the same total budget, occurs exactly when s>β, yielding closed-form compute allocation rules and explicit budget thresholds. We further characterize saturation via a mixing depth and provide a conservative clipped predictor that remains accurate across growth and saturation. A continuous-performance warm-up gives closed-form risks for star, chain, and tree organizations, making correlation- and communication-induced floors explicit and exposing the core design trade-offs in a smooth setting. Finally, we validate the predicted phase boundaries in controlled synthetic simulations and show how the same mechanisms explain the dominant bottlenecks reported in recent large-scale matched-budget studies of LLM agent-system scaling.

  • 3 authors
·
Jan 24

FMT$^{x}$: An Efficient and Asymptotically Optimal Extension of the Fast Marching Tree for Dynamic Replanning

Path planning in dynamic environments remains a core challenge in robotics, especially as autonomous systems are deployed in unpredictable spaces such as warehouses and public roads. While algorithms like Fast Marching Tree (FMT^{*}) offer asymptotically optimal solutions in static settings, their single-pass design prevents path revisions which are essential for real-time adaptation. On the other hand, full replanning is often too computationally expensive. This paper introduces FMT^{x}, an extension of the Fast Marching Tree algorithm that enables efficient and consistent replanning in dynamic environments. We revisit the neighbor selection rule of FMT^{*} and demonstrate that a minimal change overcomes its single-pass limitation, enabling the algorithm to update cost-to-come values upon discovering better connections without sacrificing asymptotic optimality or computational efficiency. By maintaining a cost-ordered priority queue and applying a selective update condition that uses an expanding neighbor to identify and trigger the re-evaluation of any node with a potentially suboptimal path, FMT^{x} ensures that suboptimal routes are efficiently repaired as the environment evolves. This targeted strategy preserves the inherent efficiency of FMT^{*} while enabling robust adaptation to changes in obstacle configuration. FMT^{x} is proven to recover an asymptotically optimal solution after environmental changes. Experimental results demonstrate that FMT^{x} outperforms the influential replanner RRT^{x}, reacting more swiftly to dynamic events with lower computational overhead and thus offering a more effective solution for real-time robotic navigation in unpredictable worlds.

  • 1 authors
·
Sep 10, 2025

DH-VTON: Deep Text-Driven Virtual Try-On via Hybrid Attention Learning

Virtual Try-ON (VTON) aims to synthesis specific person images dressed in given garments, which recently receives numerous attention in online shopping scenarios. Currently, the core challenges of the VTON task mainly lie in the fine-grained semantic extraction (i.e.,deep semantics) of the given reference garments during depth estimation and effective texture preservation when the garments are synthesized and warped onto human body. To cope with these issues, we propose DH-VTON, a deep text-driven virtual try-on model featuring a special hybrid attention learning strategy and deep garment semantic preservation module. By standing on the shoulder of a well-built pre-trained paint-by-example (abbr. PBE) approach, we present our DH-VTON pipeline in this work. Specifically, to extract the deep semantics of the garments, we first introduce InternViT-6B as fine-grained feature learner, which can be trained to align with the large-scale intrinsic knowledge with deep text semantics (e.g.,"neckline" or "girdle") to make up for the deficiency of the commonly adopted CLIP encoder. Based on this, to enhance the customized dressing abilities, we further introduce Garment-Feature ControlNet Plus (abbr. GFC+) module and propose to leverage a fresh hybrid attention strategy for training, which can adaptively integrate fine-grained characteristics of the garments into the different layers of the VTON model, so as to achieve multi-scale features preservation effects. Extensive experiments on several representative datasets demonstrate that our method outperforms previous diffusion-based and GAN-based approaches, showing competitive performance in preserving garment details and generating authentic human images.

  • 2 authors
·
Oct 16, 2024