new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 4

Vevo2: Bridging Controllable Speech and Singing Voice Generation via Unified Prosody Learning

Controllable human voice generation, particularly for expressive domains like singing, remains a significant challenge. This paper introduces Vevo2, a unified framework for controllable speech and singing voice generation. To tackle issues like the scarcity of annotated singing data and to enable flexible controllability, Vevo2 introduces two audio tokenizers: (1) a music-notation-free prosody tokenizer that captures prosody and melody from speech, singing, and even instrumental sounds, and (2) a low-frame-rate (12.5 Hz) content-style tokenizer that encodes linguistic content, prosody, and style for both speech and singing, while enabling timbre disentanglement. Vevo2 consists of an auto-regressive (AR) content-style modeling stage, which aims to enable controllability over text, prosody, and style, as well as a flow-matching acoustic modeling stage that allows for timbre control. Particularly, during pre-training of the AR model, we propose both explicit and implicit prosody learning strategies to bridge speech and singing voice. Moreover, to further enhance the AR model's ability to follow text and prosody, we design a multi-objective post-training task that integrates both intelligibility and prosody similarity alignment. Experimental results show that the unified modeling in Vevo2 brings mutual benefits to both speech and singing voice generation. Additionally, Vevo2's effectiveness across a wide range of synthesis, conversion, and editing tasks for both speech and singing further demonstrates its strong generalization ability and versatility. Audio samples are are available at https://versasinger.github.io/.

  • 8 authors
·
Aug 22, 2025

MuSE-SVS: Multi-Singer Emotional Singing Voice Synthesizer that Controls Emotional Intensity

We propose a multi-singer emotional singing voice synthesizer, Muse-SVS, that expresses emotion at various intensity levels by controlling subtle changes in pitch, energy, and phoneme duration while accurately following the score. To control multiple style attributes while avoiding loss of fidelity and expressiveness due to interference between attributes, Muse-SVS represents all attributes and their relations together by a joint embedding in a unified embedding space. Muse-SVS can express emotional intensity levels not included in the training data through embedding interpolation and extrapolation. We also propose a statistical pitch predictor to express pitch variance according to emotional intensity, and a context-aware residual duration predictor to prevent the accumulation of variances in phoneme duration, which is crucial for synchronization with instrumental parts. In addition, we propose a novel ASPP-Transformer, which combines atrous spatial pyramid pooling (ASPP) and Transformer, to improve fidelity and expressiveness by referring to broad contexts. In experiments, Muse-SVS exhibited improved fidelity, expressiveness, and synchronization performance compared with baseline models. The visualization results show that Muse-SVS effectively express the variance in pitch, energy, and phoneme duration according to emotional intensity. To the best of our knowledge, Muse-SVS is the first neural SVS capable of controlling emotional intensity.

MagicInfinite: Generating Infinite Talking Videos with Your Words and Voice

We present MagicInfinite, a novel diffusion Transformer (DiT) framework that overcomes traditional portrait animation limitations, delivering high-fidelity results across diverse character types-realistic humans, full-body figures, and stylized anime characters. It supports varied facial poses, including back-facing views, and animates single or multiple characters with input masks for precise speaker designation in multi-character scenes. Our approach tackles key challenges with three innovations: (1) 3D full-attention mechanisms with a sliding window denoising strategy, enabling infinite video generation with temporal coherence and visual quality across diverse character styles; (2) a two-stage curriculum learning scheme, integrating audio for lip sync, text for expressive dynamics, and reference images for identity preservation, enabling flexible multi-modal control over long sequences; and (3) region-specific masks with adaptive loss functions to balance global textual control and local audio guidance, supporting speaker-specific animations. Efficiency is enhanced via our innovative unified step and cfg distillation techniques, achieving a 20x inference speed boost over the basemodel: generating a 10 second 540x540p video in 10 seconds or 720x720p in 30 seconds on 8 H100 GPUs, without quality loss. Evaluations on our new benchmark demonstrate MagicInfinite's superiority in audio-lip synchronization, identity preservation, and motion naturalness across diverse scenarios. It is publicly available at https://www.hedra.com/, with examples at https://magicinfinite.github.io/.

  • 13 authors
·
Mar 7, 2025 2

PC-Talk: Precise Facial Animation Control for Audio-Driven Talking Face Generation

Recent advancements in audio-driven talking face generation have made great progress in lip synchronization. However, current methods often lack sufficient control over facial animation such as speaking style and emotional expression, resulting in uniform outputs. In this paper, we focus on improving two key factors: lip-audio alignment and emotion control, to enhance the diversity and user-friendliness of talking videos. Lip-audio alignment control focuses on elements like speaking style and the scale of lip movements, whereas emotion control is centered on generating realistic emotional expressions, allowing for modifications in multiple attributes such as intensity. To achieve precise control of facial animation, we propose a novel framework, PC-Talk, which enables lip-audio alignment and emotion control through implicit keypoint deformations. First, our lip-audio alignment control module facilitates precise editing of speaking styles at the word level and adjusts lip movement scales to simulate varying vocal loudness levels, maintaining lip synchronization with the audio. Second, our emotion control module generates vivid emotional facial features with pure emotional deformation. This module also enables the fine modification of intensity and the combination of multiple emotions across different facial regions. Our method demonstrates outstanding control capabilities and achieves state-of-the-art performance on both HDTF and MEAD datasets in extensive experiments.

  • 5 authors
·
Mar 18, 2025

Make-A-Voice: Unified Voice Synthesis With Discrete Representation

Various applications of voice synthesis have been developed independently despite the fact that they generate "voice" as output in common. In addition, the majority of voice synthesis models currently rely on annotated audio data, but it is crucial to scale them to self-supervised datasets in order to effectively capture the wide range of acoustic variations present in human voice, including speaker identity, emotion, and prosody. In this work, we propose Make-A-Voice, a unified framework for synthesizing and manipulating voice signals from discrete representations. Make-A-Voice leverages a "coarse-to-fine" approach to model the human voice, which involves three stages: 1) semantic stage: model high-level transformation between linguistic content and self-supervised semantic tokens, 2) acoustic stage: introduce varying control signals as acoustic conditions for semantic-to-acoustic modeling, and 3) generation stage: synthesize high-fidelity waveforms from acoustic tokens. Make-A-Voice offers notable benefits as a unified voice synthesis framework: 1) Data scalability: the major backbone (i.e., acoustic and generation stage) does not require any annotations, and thus the training data could be scaled up. 2) Controllability and conditioning flexibility: we investigate different conditioning mechanisms and effectively handle three voice synthesis applications, including text-to-speech (TTS), voice conversion (VC), and singing voice synthesis (SVS) by re-synthesizing the discrete voice representations with prompt guidance. Experimental results demonstrate that Make-A-Voice exhibits superior audio quality and style similarity compared with competitive baseline models. Audio samples are available at https://Make-A-Voice.github.io

  • 10 authors
·
May 30, 2023

Think2Sing: Orchestrating Structured Motion Subtitles for Singing-Driven 3D Head Animation

Singing-driven 3D head animation is a challenging yet promising task with applications in virtual avatars, entertainment, and education. Unlike speech, singing involves richer emotional nuance, dynamic prosody, and lyric-based semantics, requiring the synthesis of fine-grained, temporally coherent facial motion. Existing speech-driven approaches often produce oversimplified, emotionally flat, and semantically inconsistent results, which are insufficient for singing animation. To address this, we propose Think2Sing, a diffusion-based framework that leverages pretrained large language models to generate semantically coherent and temporally consistent 3D head animations, conditioned on both lyrics and acoustics. A key innovation is the introduction of motion subtitles, an auxiliary semantic representation derived through a novel Singing Chain-of-Thought reasoning process combined with acoustic-guided retrieval. These subtitles contain precise timestamps and region-specific motion descriptions, serving as interpretable motion priors. We frame the task as a motion intensity prediction problem, enabling finer control over facial regions and improving the modeling of expressive motion. To support this, we create a multimodal singing dataset with synchronized video, acoustic descriptors, and motion subtitles, enabling diverse and expressive motion learning. Extensive experiments show that Think2Sing outperforms state-of-the-art methods in realism, expressiveness, and emotional fidelity, while also offering flexible, user-controllable animation editing.

  • 7 authors
·
Sep 2, 2025

ControlSpeech: Towards Simultaneous and Independent Zero-shot Speaker Cloning and Zero-shot Language Style Control

In this paper, we present ControlSpeech, a text-to-speech (TTS) system capable of fully cloning the speaker's voice and enabling arbitrary control and adjustment of speaking style. Prior zero-shot TTS models only mimic the speaker's voice without further control and adjustment capabilities while prior controllable TTS models cannot perform speaker-specific voice generation. Therefore, ControlSpeech focuses on a more challenging task: a TTS system with controllable timbre, content, and style at the same time. ControlSpeech takes speech prompts, content prompts, and style prompts as inputs and utilizes bidirectional attention and mask-based parallel decoding to capture codec representations corresponding to timbre, content, and style in a discrete decoupling codec space. Moreover, we analyze the many-to-many issue in textual style control and propose the Style Mixture Semantic Density (SMSD) module, which is based on Gaussian mixture density networks, to resolve this problem. To facilitate empirical validations, we make available a new style controllable dataset called VccmDataset. Our experimental results demonstrate that ControlSpeech exhibits comparable or state-of-the-art (SOTA) performance in terms of controllability, timbre similarity, audio quality, robustness, and generalizability. The relevant code and demo are available at https://github.com/jishengpeng/ControlSpeech .

  • 11 authors
·
Jun 3, 2024

IndexTTS2: A Breakthrough in Emotionally Expressive and Duration-Controlled Auto-Regressive Zero-Shot Text-to-Speech

Existing autoregressive large-scale text-to-speech (TTS) models have advantages in speech naturalness, but their token-by-token generation mechanism makes it difficult to precisely control the duration of synthesized speech. This becomes a significant limitation in applications requiring strict audio-visual synchronization, such as video dubbing. This paper introduces IndexTTS2, which proposes a novel, general, and autoregressive model-friendly method for speech duration control. The method supports two generation modes: one explicitly specifies the number of generated tokens to precisely control speech duration; the other freely generates speech in an autoregressive manner without specifying the number of tokens, while faithfully reproducing the prosodic features of the input prompt. Furthermore, IndexTTS2 achieves disentanglement between emotional expression and speaker identity, enabling independent control over timbre and emotion. In the zero-shot setting, the model can accurately reconstruct the target timbre (from the timbre prompt) while perfectly reproducing the specified emotional tone (from the style prompt). To enhance speech clarity in highly emotional expressions, we incorporate GPT latent representations and design a novel three-stage training paradigm to improve the stability of the generated speech. Additionally, to lower the barrier for emotional control, we designed a soft instruction mechanism based on text descriptions by fine-tuning Qwen3, effectively guiding the generation of speech with the desired emotional orientation. Finally, experimental results on multiple datasets show that IndexTTS2 outperforms state-of-the-art zero-shot TTS models in terms of word error rate, speaker similarity, and emotional fidelity. Audio samples are available at: https://index-tts.github.io/index-tts2.github.io/

  • 7 authors
·
Jun 23, 2025

ParaStyleTTS: Toward Efficient and Robust Paralinguistic Style Control for Expressive Text-to-Speech Generation

Controlling speaking style in text-to-speech (TTS) systems has become a growing focus in both academia and industry. While many existing approaches rely on reference audio to guide style generation, such methods are often impractical due to privacy concerns and limited accessibility. More recently, large language models (LLMs) have been used to control speaking style through natural language prompts; however, their high computational cost, lack of interpretability, and sensitivity to prompt phrasing limit their applicability in real-time and resource-constrained environments. In this work, we propose ParaStyleTTS, a lightweight and interpretable TTS framework that enables expressive style control from text prompts alone. ParaStyleTTS features a novel two-level style adaptation architecture that separates prosodic and paralinguistic speech style modeling. It allows fine-grained and robust control over factors such as emotion, gender, and age. Unlike LLM-based methods, ParaStyleTTS maintains consistent style realization across varied prompt formulations and is well-suited for real-world applications, including on-device and low-resource deployment. Experimental results show that ParaStyleTTS generates high-quality speech with performance comparable to state-of-the-art LLM-based systems while being 30x faster, using 8x fewer parameters, and requiring 2.5x less CUDA memory. Moreover, ParaStyleTTS exhibits superior robustness and controllability over paralinguistic speaking styles, providing a practical and efficient solution for style-controllable text-to-speech generation. Demo can be found at https://parastyletts.github.io/ParaStyleTTS_Demo/. Code can be found at https://github.com/haoweilou/ParaStyleTTS.

  • 4 authors
·
Oct 21, 2025

EmoReg: Directional Latent Vector Modeling for Emotional Intensity Regularization in Diffusion-based Voice Conversion

The Emotional Voice Conversion (EVC) aims to convert the discrete emotional state from the source emotion to the target for a given speech utterance while preserving linguistic content. In this paper, we propose regularizing emotion intensity in the diffusion-based EVC framework to generate precise speech of the target emotion. Traditional approaches control the intensity of an emotional state in the utterance via emotion class probabilities or intensity labels that often lead to inept style manipulations and degradations in quality. On the contrary, we aim to regulate emotion intensity using self-supervised learning-based feature representations and unsupervised directional latent vector modeling (DVM) in the emotional embedding space within a diffusion-based framework. These emotion embeddings can be modified based on the given target emotion intensity and the corresponding direction vector. Furthermore, the updated embeddings can be fused in the reverse diffusion process to generate the speech with the desired emotion and intensity. In summary, this paper aims to achieve high-quality emotional intensity regularization in the diffusion-based EVC framework, which is the first of its kind work. The effectiveness of the proposed method has been shown across state-of-the-art (SOTA) baselines in terms of subjective and objective evaluations for the English and Hindi languages Demo samples are available at the following URL: \url{https://nirmesh-sony.github.io/EmoReg/}.

  • 5 authors
·
Dec 29, 2024 1

AVI-Talking: Learning Audio-Visual Instructions for Expressive 3D Talking Face Generation

While considerable progress has been made in achieving accurate lip synchronization for 3D speech-driven talking face generation, the task of incorporating expressive facial detail synthesis aligned with the speaker's speaking status remains challenging. Our goal is to directly leverage the inherent style information conveyed by human speech for generating an expressive talking face that aligns with the speaking status. In this paper, we propose AVI-Talking, an Audio-Visual Instruction system for expressive Talking face generation. This system harnesses the robust contextual reasoning and hallucination capability offered by Large Language Models (LLMs) to instruct the realistic synthesis of 3D talking faces. Instead of directly learning facial movements from human speech, our two-stage strategy involves the LLMs first comprehending audio information and generating instructions implying expressive facial details seamlessly corresponding to the speech. Subsequently, a diffusion-based generative network executes these instructions. This two-stage process, coupled with the incorporation of LLMs, enhances model interpretability and provides users with flexibility to comprehend instructions and specify desired operations or modifications. Extensive experiments showcase the effectiveness of our approach in producing vivid talking faces with expressive facial movements and consistent emotional status.

  • 5 authors
·
Feb 25, 2024

MM-TTS: Multi-modal Prompt based Style Transfer for Expressive Text-to-Speech Synthesis

The style transfer task in Text-to-Speech refers to the process of transferring style information into text content to generate corresponding speech with a specific style. However, most existing style transfer approaches are either based on fixed emotional labels or reference speech clips, which cannot achieve flexible style transfer. Recently, some methods have adopted text descriptions to guide style transfer. In this paper, we propose a more flexible multi-modal and style controllable TTS framework named MM-TTS. It can utilize any modality as the prompt in unified multi-modal prompt space, including reference speech, emotional facial images, and text descriptions, to control the style of the generated speech in a system. The challenges of modeling such a multi-modal style controllable TTS mainly lie in two aspects:1)aligning the multi-modal information into a unified style space to enable the input of arbitrary modality as the style prompt in a single system, and 2)efficiently transferring the unified style representation into the given text content, thereby empowering the ability to generate prompt style-related voice. To address these problems, we propose an aligned multi-modal prompt encoder that embeds different modalities into a unified style space, supporting style transfer for different modalities. Additionally, we present a new adaptive style transfer method named Style Adaptive Convolutions to achieve a better style representation. Furthermore, we design a Rectified Flow based Refiner to solve the problem of over-smoothing Mel-spectrogram and generate audio of higher fidelity. Since there is no public dataset for multi-modal TTS, we construct a dataset named MEAD-TTS, which is related to the field of expressive talking head. Our experiments on the MEAD-TTS dataset and out-of-domain datasets demonstrate that MM-TTS can achieve satisfactory results based on multi-modal prompts.

  • 9 authors
·
Dec 17, 2023

EmoDubber: Towards High Quality and Emotion Controllable Movie Dubbing

Given a piece of text, a video clip, and a reference audio, the movie dubbing task aims to generate speech that aligns with the video while cloning the desired voice. The existing methods have two primary deficiencies: (1) They struggle to simultaneously hold audio-visual sync and achieve clear pronunciation; (2) They lack the capacity to express user-defined emotions. To address these problems, we propose EmoDubber, an emotion-controllable dubbing architecture that allows users to specify emotion type and emotional intensity while satisfying high-quality lip sync and pronunciation. Specifically, we first design Lip-related Prosody Aligning (LPA), which focuses on learning the inherent consistency between lip motion and prosody variation by duration level contrastive learning to incorporate reasonable alignment. Then, we design Pronunciation Enhancing (PE) strategy to fuse the video-level phoneme sequences by efficient conformer to improve speech intelligibility. Next, the speaker identity adapting module aims to decode acoustics prior and inject the speaker style embedding. After that, the proposed Flow-based User Emotion Controlling (FUEC) is used to synthesize waveform by flow matching prediction network conditioned on acoustics prior. In this process, the FUEC determines the gradient direction and guidance scale based on the user's emotion instructions by the positive and negative guidance mechanism, which focuses on amplifying the desired emotion while suppressing others. Extensive experimental results on three benchmark datasets demonstrate favorable performance compared to several state-of-the-art methods.

  • 8 authors
·
Dec 12, 2024

Learn to Sing by Listening: Building Controllable Virtual Singer by Unsupervised Learning from Voice Recordings

The virtual world is being established in which digital humans are created indistinguishable from real humans. Producing their audio-related capabilities is crucial since voice conveys extensive personal characteristics. We aim to create a controllable audio-form virtual singer; however, supervised modeling and controlling all different factors of the singing voice, such as timbre, tempo, pitch, and lyrics, is extremely difficult since accurately labeling all such information needs enormous labor work. In this paper, we propose a framework that could digitize a person's voice by simply "listening" to the clean voice recordings of any content in a fully unsupervised manner and predict singing voices even only using speaking recordings. A variational auto-encoder (VAE) based framework is developed, which leverages a set of pre-trained models to encode the audio as various hidden embeddings representing different factors of the singing voice, and further decodes the embeddings into raw audio. By manipulating the hidden embeddings for different factors, the resulting singing voices can be controlled, and new virtual singers can also be further generated by interpolating between timbres. Evaluations of different types of experiments demonstrate the proposed method's effectiveness. The proposed method is the critical technique for producing the AI choir, which empowered the human-AI symbiotic orchestra in Hong Kong in July 2022.

  • 4 authors
·
May 9, 2023

EchoMind: An Interrelated Multi-level Benchmark for Evaluating Empathetic Speech Language Models

Speech Language Models (SLMs) have made significant progress in spoken language understanding. Yet it remains unclear whether they can fully perceive non lexical vocal cues alongside spoken words, and respond with empathy that aligns with both emotional and contextual factors. Existing benchmarks typically evaluate linguistic, acoustic, reasoning, or dialogue abilities in isolation, overlooking the integration of these skills that is crucial for human-like, emotionally intelligent conversation. We present EchoMind, the first interrelated, multi-level benchmark that simulates the cognitive process of empathetic dialogue through sequential, context-linked tasks: spoken-content understanding, vocal-cue perception, integrated reasoning, and response generation. All tasks share identical and semantically neutral scripts that are free of explicit emotional or contextual cues, and controlled variations in vocal style are used to test the effect of delivery independent of the transcript. EchoMind is grounded in an empathy-oriented framework spanning 3 coarse and 12 fine-grained dimensions, encompassing 39 vocal attributes, and evaluated using both objective and subjective metrics. Testing 12 advanced SLMs reveals that even state-of-the-art models struggle with high-expressive vocal cues, limiting empathetic response quality. Analyses of prompt strength, speech source, and ideal vocal cue recognition reveal persistent weaknesses in instruction-following, resilience to natural speech variability, and effective use of vocal cues for empathy. These results underscore the need for SLMs that integrate linguistic content with diverse vocal cues to achieve truly empathetic conversational ability.

  • 9 authors
·
Oct 26, 2025

EmoCAST: Emotional Talking Portrait via Emotive Text Description

Emotional talking head synthesis aims to generate talking portrait videos with vivid expressions. Existing methods still exhibit limitations in control flexibility, motion naturalness, and expression quality. Moreover, currently available datasets are mainly collected in lab settings, further exacerbating these shortcomings and hindering real-world deployment. To address these challenges, we propose EmoCAST, a diffusion-based talking head framework for precise, text-driven emotional synthesis. Its contributions are threefold: (1) architectural modules that enable effective text control; (2) an emotional talking-head dataset that expands the framework's ability; and (3) training strategies that further improve performance. Specifically, for appearance modeling, emotional prompts are integrated through a text-guided emotive attention module, enhancing spatial knowledge to improve emotion understanding. To strengthen audio-emotion alignment, we introduce an emotive audio attention module to capture the interplay between controlled emotion and driving audio, generating emotion-aware features to guide precise facial motion synthesis. Additionally, we construct a large-scale, in-the-wild emotional talking head dataset with emotive text descriptions to optimize the framework's performance. Based on this dataset, we propose an emotion-aware sampling strategy and a progressive functional training strategy that improve the model's ability to capture nuanced expressive features and achieve accurate lip-sync. Overall, EmoCAST achieves state-of-the-art performance in generating realistic, emotionally expressive, and audio-synchronized talking-head videos. Project Page: https://github.com/GVCLab/EmoCAST

  • 6 authors
·
Aug 28, 2025

ChatAnyone: Stylized Real-time Portrait Video Generation with Hierarchical Motion Diffusion Model

Real-time interactive video-chat portraits have been increasingly recognized as the future trend, particularly due to the remarkable progress made in text and voice chat technologies. However, existing methods primarily focus on real-time generation of head movements, but struggle to produce synchronized body motions that match these head actions. Additionally, achieving fine-grained control over the speaking style and nuances of facial expressions remains a challenge. To address these limitations, we introduce a novel framework for stylized real-time portrait video generation, enabling expressive and flexible video chat that extends from talking head to upper-body interaction. Our approach consists of the following two stages. The first stage involves efficient hierarchical motion diffusion models, that take both explicit and implicit motion representations into account based on audio inputs, which can generate a diverse range of facial expressions with stylistic control and synchronization between head and body movements. The second stage aims to generate portrait video featuring upper-body movements, including hand gestures. We inject explicit hand control signals into the generator to produce more detailed hand movements, and further perform face refinement to enhance the overall realism and expressiveness of the portrait video. Additionally, our approach supports efficient and continuous generation of upper-body portrait video in maximum 512 * 768 resolution at up to 30fps on 4090 GPU, supporting interactive video-chat in real-time. Experimental results demonstrate the capability of our approach to produce portrait videos with rich expressiveness and natural upper-body movements.

  • 6 authors
·
Mar 27, 2025 3

Emotional Speech-Driven Animation with Content-Emotion Disentanglement

To be widely adopted, 3D facial avatars must be animated easily, realistically, and directly from speech signals. While the best recent methods generate 3D animations that are synchronized with the input audio, they largely ignore the impact of emotions on facial expressions. Realistic facial animation requires lip-sync together with the natural expression of emotion. To that end, we propose EMOTE (Expressive Model Optimized for Talking with Emotion), which generates 3D talking-head avatars that maintain lip-sync from speech while enabling explicit control over the expression of emotion. To achieve this, we supervise EMOTE with decoupled losses for speech (i.e., lip-sync) and emotion. These losses are based on two key observations: (1) deformations of the face due to speech are spatially localized around the mouth and have high temporal frequency, whereas (2) facial expressions may deform the whole face and occur over longer intervals. Thus, we train EMOTE with a per-frame lip-reading loss to preserve the speech-dependent content, while supervising emotion at the sequence level. Furthermore, we employ a content-emotion exchange mechanism in order to supervise different emotions on the same audio, while maintaining the lip motion synchronized with the speech. To employ deep perceptual losses without getting undesirable artifacts, we devise a motion prior in the form of a temporal VAE. Due to the absence of high-quality aligned emotional 3D face datasets with speech, EMOTE is trained with 3D pseudo-ground-truth extracted from an emotional video dataset (i.e., MEAD). Extensive qualitative and perceptual evaluations demonstrate that EMOTE produces speech-driven facial animations with better lip-sync than state-of-the-art methods trained on the same data, while offering additional, high-quality emotional control.

EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting

Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and modality-of-thought (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://anonymous.4open.science/r/EmoVoice-DF55. Dataset, code, and checkpoints will be released.

  • 15 authors
·
Apr 17, 2025

DiTalker: A Unified DiT-based Framework for High-Quality and Speaking Styles Controllable Portrait Animation

Portrait animation aims to synthesize talking videos from a static reference face, conditioned on audio and style frame cues (e.g., emotion and head poses), while ensuring precise lip synchronization and faithful reproduction of speaking styles. Existing diffusion-based portrait animation methods primarily focus on lip synchronization or static emotion transformation, often overlooking dynamic styles such as head movements. Moreover, most of these methods rely on a dual U-Net architecture, which preserves identity consistency but incurs additional computational overhead. To this end, we propose DiTalker, a unified DiT-based framework for speaking style-controllable portrait animation. We design a Style-Emotion Encoding Module that employs two separate branches: a style branch extracting identity-specific style information (e.g., head poses and movements), and an emotion branch extracting identity-agnostic emotion features. We further introduce an Audio-Style Fusion Module that decouples audio and speaking styles via two parallel cross-attention layers, using these features to guide the animation process. To enhance the quality of results, we adopt and modify two optimization constraints: one to improve lip synchronization and the other to preserve fine-grained identity and background details. Extensive experiments demonstrate the superiority of DiTalker in terms of lip synchronization and speaking style controllability. Project Page: https://thenameishope.github.io/DiTalker/

  • 6 authors
·
Jul 29, 2025

MVPortrait: Text-Guided Motion and Emotion Control for Multi-view Vivid Portrait Animation

Recent portrait animation methods have made significant strides in generating realistic lip synchronization. However, they often lack explicit control over head movements and facial expressions, and cannot produce videos from multiple viewpoints, resulting in less controllable and expressive animations. Moreover, text-guided portrait animation remains underexplored, despite its user-friendly nature. We present a novel two-stage text-guided framework, MVPortrait (Multi-view Vivid Portrait), to generate expressive multi-view portrait animations that faithfully capture the described motion and emotion. MVPortrait is the first to introduce FLAME as an intermediate representation, effectively embedding facial movements, expressions, and view transformations within its parameter space. In the first stage, we separately train the FLAME motion and emotion diffusion models based on text input. In the second stage, we train a multi-view video generation model conditioned on a reference portrait image and multi-view FLAME rendering sequences from the first stage. Experimental results exhibit that MVPortrait outperforms existing methods in terms of motion and emotion control, as well as view consistency. Furthermore, by leveraging FLAME as a bridge, MVPortrait becomes the first controllable portrait animation framework that is compatible with text, speech, and video as driving signals.

  • 7 authors
·
Mar 25, 2025

VStyle: A Benchmark for Voice Style Adaptation with Spoken Instructions

Spoken language models (SLMs) have emerged as a unified paradigm for speech understanding and generation, enabling natural human machine interaction. However, while most progress has focused on semantic accuracy and instruction following, the ability of SLMs to adapt their speaking style based on spoken instructions has received limited attention. We introduce Voice Style Adaptation (VSA), a new task that examines whether SLMs can modify their speaking style, such as timbre, prosody, or persona following natural language spoken commands. To study this task, we present VStyle, a bilingual (Chinese & English) benchmark covering four categories of speech generation: acoustic attributes, natural language instruction, role play, and implicit empathy. We also introduce the Large Audio Language Model as a Judge (LALM as a Judge) framework, which progressively evaluates outputs along textual faithfulness, style adherence, and naturalness, ensuring reproducible and objective assessment. Experiments on commercial systems and open source SLMs demonstrate that current models face clear limitations in controllable style adaptation, highlighting both the novelty and challenge of this task. By releasing VStyle and its evaluation toolkit, we aim to provide the community with a foundation for advancing human centered spoken interaction. The dataset and code are publicly available at https://junzhan2000.github.io/VStyle.github.io/{project's homepage}.

  • 14 authors
·
Sep 9, 2025 2

NaturalVoices: A Large-Scale, Spontaneous and Emotional Podcast Dataset for Voice Conversion

Everyday speech conveys far more than words, it reflects who we are, how we feel, and the circumstances surrounding our interactions. Yet, most existing speech datasets are acted, limited in scale, and fail to capture the expressive richness of real-life communication. With the rise of large neural networks, several large-scale speech corpora have emerged and been widely adopted across various speech processing tasks. However, the field of voice conversion (VC) still lacks large-scale, expressive, and real-life speech resources suitable for modeling natural prosody and emotion. To fill this gap, we release NaturalVoices (NV), the first large-scale spontaneous podcast dataset specifically designed for emotion-aware voice conversion. It comprises 5,049 hours of spontaneous podcast recordings with automatic annotations for emotion (categorical and attribute-based), speech quality, transcripts, speaker identity, and sound events. The dataset captures expressive emotional variation across thousands of speakers, diverse topics, and natural speaking styles. We also provide an open-source pipeline with modular annotation tools and flexible filtering, enabling researchers to construct customized subsets for a wide range of VC tasks. Experiments demonstrate that NaturalVoices supports the development of robust and generalizable VC models capable of producing natural, expressive speech, while revealing limitations of current architectures when applied to large-scale spontaneous data. These results suggest that NaturalVoices is both a valuable resource and a challenging benchmark for advancing the field of voice conversion. Dataset is available at: https://huggingface.co/JHU-SmileLab

  • 7 authors
·
Oct 31, 2025

InstructTTSEval: Benchmarking Complex Natural-Language Instruction Following in Text-to-Speech Systems

In modern speech synthesis, paralinguistic information--such as a speaker's vocal timbre, emotional state, and dynamic prosody--plays a critical role in conveying nuance beyond mere semantics. Traditional Text-to-Speech (TTS) systems rely on fixed style labels or inserting a speech prompt to control these cues, which severely limits flexibility. Recent attempts seek to employ natural-language instructions to modulate paralinguistic features, substantially improving the generalization of instruction-driven TTS models. Although many TTS systems now support customized synthesis via textual description, their actual ability to interpret and execute complex instructions remains largely unexplored. In addition, there is still a shortage of high-quality benchmarks and automated evaluation metrics specifically designed for instruction-based TTS, which hinders accurate assessment and iterative optimization of these models. To address these limitations, we introduce InstructTTSEval, a benchmark for measuring the capability of complex natural-language style control. We introduce three tasks, namely Acoustic-Parameter Specification, Descriptive-Style Directive, and Role-Play, including English and Chinese subsets, each with 1k test cases (6k in total) paired with reference audio. We leverage Gemini as an automatic judge to assess their instruction-following abilities. Our evaluation of accessible instruction-following TTS systems highlights substantial room for further improvement. We anticipate that InstructTTSEval will drive progress toward more powerful, flexible, and accurate instruction-following TTS.

  • 9 authors
·
Jun 19, 2025

Audiobox: Unified Audio Generation with Natural Language Prompts

Audio is an essential part of our life, but creating it often requires expertise and is time-consuming. Research communities have made great progress over the past year advancing the performance of large scale audio generative models for a single modality (speech, sound, or music) through adopting more powerful generative models and scaling data. However, these models lack controllability in several aspects: speech generation models cannot synthesize novel styles based on text description and are limited on domain coverage such as outdoor environments; sound generation models only provide coarse-grained control based on descriptions like "a person speaking" and would only generate mumbling human voices. This paper presents Audiobox, a unified model based on flow-matching that is capable of generating various audio modalities. We design description-based and example-based prompting to enhance controllability and unify speech and sound generation paradigms. We allow transcript, vocal, and other audio styles to be controlled independently when generating speech. To improve model generalization with limited labels, we adapt a self-supervised infilling objective to pre-train on large quantities of unlabeled audio. Audiobox sets new benchmarks on speech and sound generation (0.745 similarity on Librispeech for zero-shot TTS; 0.77 FAD on AudioCaps for text-to-sound) and unlocks new methods for generating audio with novel vocal and acoustic styles. We further integrate Bespoke Solvers, which speeds up generation by over 25 times compared to the default ODE solver for flow-matching, without loss of performance on several tasks. Our demo is available at https://audiobox.metademolab.com/

  • 24 authors
·
Dec 25, 2023 4

OpenVoice: Versatile Instant Voice Cloning

We introduce OpenVoice, a versatile voice cloning approach that requires only a short audio clip from the reference speaker to replicate their voice and generate speech in multiple languages. OpenVoice represents a significant advancement in addressing the following open challenges in the field: 1) Flexible Voice Style Control. OpenVoice enables granular control over voice styles, including emotion, accent, rhythm, pauses, and intonation, in addition to replicating the tone color of the reference speaker. The voice styles are not directly copied from and constrained by the style of the reference speaker. Previous approaches lacked the ability to flexibly manipulate voice styles after cloning. 2) Zero-Shot Cross-Lingual Voice Cloning. OpenVoice achieves zero-shot cross-lingual voice cloning for languages not included in the massive-speaker training set. Unlike previous approaches, which typically require extensive massive-speaker multi-lingual (MSML) dataset for all languages, OpenVoice can clone voices into a new language without any massive-speaker training data for that language. OpenVoice is also computationally efficient, costing tens of times less than commercially available APIs that offer even inferior performance. To foster further research in the field, we have made the source code and trained model publicly accessible. We also provide qualitative results in our demo website. Prior to its public release, our internal version of OpenVoice was used tens of millions of times by users worldwide between May and October 2023, serving as the backend of MyShell.

  • 4 authors
·
Dec 3, 2023

LibriQuote: A Speech Dataset of Fictional Character Utterances for Expressive Zero-Shot Speech Synthesis

Text-to-speech (TTS) systems have recently achieved more expressive and natural speech synthesis by scaling to large speech datasets. However, the proportion of expressive speech in such large-scale corpora is often unclear. Besides, existing expressive speech corpora are typically smaller in scale and primarily used for benchmarking TTS systems. In this paper, we introduce the LibriQuote dataset, an English corpus derived from read audiobooks, designed for both fine-tuning and benchmarking expressive zero-shot TTS system. The training dataset includes 12.7K hours of read, non-expressive speech and 5.3K hours of mostly expressive speech drawn from character quotations. Each utterance in the expressive subset is supplemented with the context in which it was written, along with pseudo-labels of speech verbs and adverbs used to describe the quotation (e.g. ``he whispered softly''). Additionally, we provide a challenging 7.5 hour test set intended for benchmarking TTS systems: given a neutral reference speech as input, we evaluate system's ability to synthesize an expressive utterance while preserving reference timbre. We validate qualitatively the test set by showing that it covers a wide range of emotions compared to non-expressive speech, along with various accents. Extensive subjective and objective evaluations show that fine-tuning a baseline TTS system on LibriQuote significantly improves its synthesized speech intelligibility, and that recent systems fail to synthesize speech as expressive and natural as the ground-truth utterances. The dataset and evaluation code are freely available. Audio samples can be found at https://libriquote.github.io/.

  • 3 authors
·
Sep 4, 2025

Emotional Speech-driven 3D Body Animation via Disentangled Latent Diffusion

Existing methods for synthesizing 3D human gestures from speech have shown promising results, but they do not explicitly model the impact of emotions on the generated gestures. Instead, these methods directly output animations from speech without control over the expressed emotion. To address this limitation, we present AMUSE, an emotional speech-driven body animation model based on latent diffusion. Our observation is that content (i.e., gestures related to speech rhythm and word utterances), emotion, and personal style are separable. To account for this, AMUSE maps the driving audio to three disentangled latent vectors: one for content, one for emotion, and one for personal style. A latent diffusion model, trained to generate gesture motion sequences, is then conditioned on these latent vectors. Once trained, AMUSE synthesizes 3D human gestures directly from speech with control over the expressed emotions and style by combining the content from the driving speech with the emotion and style of another speech sequence. Randomly sampling the noise of the diffusion model further generates variations of the gesture with the same emotional expressivity. Qualitative, quantitative, and perceptual evaluations demonstrate that AMUSE outputs realistic gesture sequences. Compared to the state of the art, the generated gestures are better synchronized with the speech content and better represent the emotion expressed by the input speech. Our project website is amuse.is.tue.mpg.de.

KTH KTH
·
Dec 7, 2023

Affective social anthropomorphic intelligent system

Human conversational styles are measured by the sense of humor, personality, and tone of voice. These characteristics have become essential for conversational intelligent virtual assistants. However, most of the state-of-the-art intelligent virtual assistants (IVAs) are failed to interpret the affective semantics of human voices. This research proposes an anthropomorphic intelligent system that can hold a proper human-like conversation with emotion and personality. A voice style transfer method is also proposed to map the attributes of a specific emotion. Initially, the frequency domain data (Mel-Spectrogram) is created by converting the temporal audio wave data, which comprises discrete patterns for audio features such as notes, pitch, rhythm, and melody. A collateral CNN-Transformer-Encoder is used to predict seven different affective states from voice. The voice is also fed parallelly to the deep-speech, an RNN model that generates the text transcription from the spectrogram. Then the transcripted text is transferred to the multi-domain conversation agent using blended skill talk, transformer-based retrieve-and-generate generation strategy, and beam-search decoding, and an appropriate textual response is generated. The system learns an invertible mapping of data to a latent space that can be manipulated and generates a Mel-spectrogram frame based on previous Mel-spectrogram frames to voice synthesize and style transfer. Finally, the waveform is generated using WaveGlow from the spectrogram. The outcomes of the studies we conducted on individual models were auspicious. Furthermore, users who interacted with the system provided positive feedback, demonstrating the system's effectiveness.

  • 5 authors
·
Apr 19, 2023

BatonVoice: An Operationalist Framework for Enhancing Controllable Speech Synthesis with Linguistic Intelligence from LLMs

The rise of Large Language Models (LLMs) is reshaping multimodel models, with speech synthesis being a prominent application. However, existing approaches often underutilize the linguistic intelligence of these models, typically failing to leverage their powerful instruction-following capabilities. This limitation hinders the model's ability to follow text instructions for controllable Text-to-Speech~(TTS). To address this, we propose a new paradigm inspired by ``operationalism'' that decouples instruction understanding from speech generation. We introduce BatonVoice, a framework where an LLM acts as a ``conductor'', understanding user instructions and generating a textual ``plan'' -- explicit vocal features (e.g., pitch, energy). A separate TTS model, the ``orchestra'', then generates the speech from these features. To realize this component, we develop BatonTTS, a TTS model trained specifically for this task. Our experiments demonstrate that BatonVoice achieves strong performance in controllable and emotional speech synthesis, outperforming strong open- and closed-source baselines. Notably, our approach enables remarkable zero-shot cross-lingual generalization, accurately applying feature control abilities to languages unseen during post-training. This demonstrates that objectifying speech into textual vocal features can more effectively unlock the linguistic intelligence of LLMs.

tencent Tencent
·
Sep 30, 2025 2

FantasyTalking: Realistic Talking Portrait Generation via Coherent Motion Synthesis

Creating a realistic animatable avatar from a single static portrait remains challenging. Existing approaches often struggle to capture subtle facial expressions, the associated global body movements, and the dynamic background. To address these limitations, we propose a novel framework that leverages a pretrained video diffusion transformer model to generate high-fidelity, coherent talking portraits with controllable motion dynamics. At the core of our work is a dual-stage audio-visual alignment strategy. In the first stage, we employ a clip-level training scheme to establish coherent global motion by aligning audio-driven dynamics across the entire scene, including the reference portrait, contextual objects, and background. In the second stage, we refine lip movements at the frame level using a lip-tracing mask, ensuring precise synchronization with audio signals. To preserve identity without compromising motion flexibility, we replace the commonly used reference network with a facial-focused cross-attention module that effectively maintains facial consistency throughout the video. Furthermore, we integrate a motion intensity modulation module that explicitly controls expression and body motion intensity, enabling controllable manipulation of portrait movements beyond mere lip motion. Extensive experimental results show that our proposed approach achieves higher quality with better realism, coherence, motion intensity, and identity preservation. Ours project page: https://fantasy-amap.github.io/fantasy-talking/.

  • 8 authors
·
Apr 7, 2025 4

Voila: Voice-Language Foundation Models for Real-Time Autonomous Interaction and Voice Role-Play

A voice AI agent that blends seamlessly into daily life would interact with humans in an autonomous, real-time, and emotionally expressive manner. Rather than merely reacting to commands, it would continuously listen, reason, and respond proactively, fostering fluid, dynamic, and emotionally resonant interactions. We introduce Voila, a family of large voice-language foundation models that make a step towards this vision. Voila moves beyond traditional pipeline systems by adopting a new end-to-end architecture that enables full-duplex, low-latency conversations while preserving rich vocal nuances such as tone, rhythm, and emotion. It achieves a response latency of just 195 milliseconds, surpassing the average human response time. Its hierarchical multi-scale Transformer integrates the reasoning capabilities of large language models (LLMs) with powerful acoustic modeling, enabling natural, persona-aware voice generation -- where users can simply write text instructions to define the speaker's identity, tone, and other characteristics. Moreover, Voila supports over one million pre-built voices and efficient customization of new ones from brief audio samples as short as 10 seconds. Beyond spoken dialogue, Voila is designed as a unified model for a wide range of voice-based applications, including automatic speech recognition (ASR), Text-to-Speech (TTS), and, with minimal adaptation, multilingual speech translation. Voila is fully open-sourced to support open research and accelerate progress toward next-generation human-machine interactions.

  • 7 authors
·
May 5, 2025 4

Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement

The imitation of voice, targeted on specific speech attributes such as timbre and speaking style, is crucial in speech generation. However, existing methods rely heavily on annotated data, and struggle with effectively disentangling timbre and style, leading to challenges in achieving controllable generation, especially in zero-shot scenarios. To address these issues, we propose Vevo, a versatile zero-shot voice imitation framework with controllable timbre and style. Vevo operates in two core stages: (1) Content-Style Modeling: Given either text or speech's content tokens as input, we utilize an autoregressive transformer to generate the content-style tokens, which is prompted by a style reference; (2) Acoustic Modeling: Given the content-style tokens as input, we employ a flow-matching transformer to produce acoustic representations, which is prompted by a timbre reference. To obtain the content and content-style tokens of speech, we design a fully self-supervised approach that progressively decouples the timbre, style, and linguistic content of speech. Specifically, we adopt VQ-VAE as the tokenizer for the continuous hidden features of HuBERT. We treat the vocabulary size of the VQ-VAE codebook as the information bottleneck, and adjust it carefully to obtain the disentangled speech representations. Solely self-supervised trained on 60K hours of audiobook speech data, without any fine-tuning on style-specific corpora, Vevo matches or surpasses existing methods in accent and emotion conversion tasks. Additionally, Vevo's effectiveness in zero-shot voice conversion and text-to-speech tasks further demonstrates its strong generalization and versatility. Audio samples are available at https://versavoice.github.io.

  • 13 authors
·
Feb 10, 2025

ReStyle-TTS: Relative and Continuous Style Control for Zero-Shot Speech Synthesis

Zero-shot text-to-speech models can clone a speaker's timbre from a short reference audio, but they also strongly inherit the speaking style present in the reference. As a result, synthesizing speech with a desired style often requires carefully selecting reference audio, which is impractical when only limited or mismatched references are available. While recent controllable TTS methods attempt to address this issue, they typically rely on absolute style targets and discrete textual prompts, and therefore do not support continuous and reference-relative style control. We propose ReStyle-TTS, a framework that enables continuous and reference-relative style control in zero-shot TTS. Our key insight is that effective style control requires first reducing the model's implicit dependence on reference style before introducing explicit control mechanisms. To this end, we introduce Decoupled Classifier-Free Guidance (DCFG), which independently controls text and reference guidance, reducing reliance on reference style while preserving text fidelity. On top of this, we apply style-specific LoRAs together with Orthogonal LoRA Fusion to enable continuous and disentangled multi-attribute control, and introduce a Timbre Consistency Optimization module to mitigate timbre drift caused by weakened reference guidance. Experiments show that ReStyle-TTS enables user-friendly, continuous, and relative control over pitch, energy, and multiple emotions while maintaining intelligibility and speaker timbre, and performs robustly in challenging mismatched reference-target style scenarios.

  • 6 authors
·
Jan 7

Constructing a Singing Style Caption Dataset

Singing voice synthesis and conversion have emerged as significant subdomains of voice generation, leading to much demands on prompt-conditioned generation. Unlike common voice data, generating a singing voice requires an understanding of various associated vocal and musical characteristics, such as the vocal tone of the singer or emotional expressions. However, existing open-source audio-text datasets for voice generation tend to capture only a very limited range of attributes, often missing musical characteristics of the audio. To fill this gap, we introduce S2Cap, an audio-text pair dataset with a diverse set of attributes. S2Cap consists of pairs of textual prompts and music audio samples with a wide range of vocal and musical attributes, including pitch, volume, tempo, mood, singer's gender and age, and musical genre and emotional expression. Utilizing S2Cap, we suggest an effective novel baseline algorithm for singing style captioning. Singing style captioning is a relative task to voice generation that generates text descriptions of vocal characteristics, which we first suggested. First, to mitigate the misalignment between the audio encoder and the text decoder, we present a novel mechanism called CRESCENDO, which utilizes positive-pair similarity learning to synchronize the embedding spaces of a pretrained audio encoder to get similar embeddings with a text encoder. We additionally supervise the model using the singer's voice, which is demixed by the accompaniment. This supervision allows the model to more accurately capture vocal characteristics, leading to improved singing style captions that better reflect the style of the singer. The dataset and the codes are available at https://github.com/HJ-Ok/S2cap.

  • 2 authors
·
Sep 15, 2024

EmoNet-Voice: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection

The advancement of text-to-speech and audio generation models necessitates robust benchmarks for evaluating the emotional understanding capabilities of AI systems. Current speech emotion recognition (SER) datasets often exhibit limitations in emotional granularity, privacy concerns, or reliance on acted portrayals. This paper introduces EmoNet-Voice, a new resource for speech emotion detection, which includes EmoNet-Voice Big, a large-scale pre-training dataset (featuring over 4,500 hours of speech across 11 voices, 40 emotions, and 4 languages), and EmoNet-Voice Bench, a novel benchmark dataset with human expert annotations. EmoNet-Voice is designed to evaluate SER models on a fine-grained spectrum of 40 emotion categories with different levels of intensities. Leveraging state-of-the-art voice generation, we curated synthetic audio snippets simulating actors portraying scenes designed to evoke specific emotions. Crucially, we conducted rigorous validation by psychology experts who assigned perceived intensity labels. This synthetic, privacy-preserving approach allows for the inclusion of sensitive emotional states often absent in existing datasets. Lastly, we introduce Empathic Insight Voice models that set a new standard in speech emotion recognition with high agreement with human experts. Our evaluations across the current model landscape exhibit valuable findings, such as high-arousal emotions like anger being much easier to detect than low-arousal states like concentration.

  • 9 authors
·
Jun 11, 2025 2

Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation

Recent advances in Talking Head Generation (THG) have achieved impressive lip synchronization and visual quality through diffusion models; yet existing methods struggle to generate emotionally expressive portraits while preserving speaker identity. We identify three critical limitations in current emotional talking head generation: insufficient utilization of audio's inherent emotional cues, identity leakage in emotion representations, and isolated learning of emotion correlations. To address these challenges, we propose a novel framework dubbed as DICE-Talk, following the idea of disentangling identity with emotion, and then cooperating emotions with similar characteristics. First, we develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention, representing emotions as identity-agnostic Gaussian distributions. Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks that explicitly capture inter-emotion relationships through vector quantization and attention-based feature aggregation. Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process through latent-space classification. Extensive experiments on MEAD and HDTF datasets demonstrate our method's superiority, outperforming state-of-the-art approaches in emotion accuracy while maintaining competitive lip-sync performance. Qualitative results and user studies further confirm our method's ability to generate identity-preserving portraits with rich, correlated emotional expressions that naturally adapt to unseen identities.

  • 9 authors
·
Apr 25, 2025 2

MinMo: A Multimodal Large Language Model for Seamless Voice Interaction

Recent advancements in large language models (LLMs) and multimodal speech-text models have laid the groundwork for seamless voice interactions, enabling real-time, natural, and human-like conversations. Previous models for voice interactions are categorized as native and aligned. Native models integrate speech and text processing in one framework but struggle with issues like differing sequence lengths and insufficient pre-training. Aligned models maintain text LLM capabilities but are often limited by small datasets and a narrow focus on speech tasks. In this work, we introduce MinMo, a Multimodal Large Language Model with approximately 8B parameters for seamless voice interaction. We address the main limitations of prior aligned multimodal models. We train MinMo through multiple stages of speech-to-text alignment, text-to-speech alignment, speech-to-speech alignment, and duplex interaction alignment, on 1.4 million hours of diverse speech data and a broad range of speech tasks. After the multi-stage training, MinMo achieves state-of-the-art performance across various benchmarks for voice comprehension and generation while maintaining the capabilities of text LLMs, and also facilitates full-duplex conversation, that is, simultaneous two-way communication between the user and the system. Moreover, we propose a novel and simple voice decoder that outperforms prior models in voice generation. The enhanced instruction-following capabilities of MinMo supports controlling speech generation based on user instructions, with various nuances including emotions, dialects, and speaking rates, and mimicking specific voices. For MinMo, the speech-to-text latency is approximately 100ms, full-duplex latency is approximately 600ms in theory and 800ms in practice. The MinMo project web page is https://funaudiollm.github.io/minmo, and the code and models will be released soon.

  • 36 authors
·
Jan 10, 2025 8

RealTalk: Real-time and Realistic Audio-driven Face Generation with 3D Facial Prior-guided Identity Alignment Network

Person-generic audio-driven face generation is a challenging task in computer vision. Previous methods have achieved remarkable progress in audio-visual synchronization, but there is still a significant gap between current results and practical applications. The challenges are two-fold: 1) Preserving unique individual traits for achieving high-precision lip synchronization. 2) Generating high-quality facial renderings in real-time performance. In this paper, we propose a novel generalized audio-driven framework RealTalk, which consists of an audio-to-expression transformer and a high-fidelity expression-to-face renderer. In the first component, we consider both identity and intra-personal variation features related to speaking lip movements. By incorporating cross-modal attention on the enriched facial priors, we can effectively align lip movements with audio, thus attaining greater precision in expression prediction. In the second component, we design a lightweight facial identity alignment (FIA) module which includes a lip-shape control structure and a face texture reference structure. This novel design allows us to generate fine details in real-time, without depending on sophisticated and inefficient feature alignment modules. Our experimental results, both quantitative and qualitative, on public datasets demonstrate the clear advantages of our method in terms of lip-speech synchronization and generation quality. Furthermore, our method is efficient and requires fewer computational resources, making it well-suited to meet the needs of practical applications.

  • 10 authors
·
Jun 26, 2024 2

NVSpeech: An Integrated and Scalable Pipeline for Human-Like Speech Modeling with Paralinguistic Vocalizations

Paralinguistic vocalizations-including non-verbal sounds like laughter and breathing, as well as lexicalized interjections such as "uhm" and "oh"-are integral to natural spoken communication. Despite their importance in conveying affect, intent, and interactional cues, such cues remain largely overlooked in conventional automatic speech recognition (ASR) and text-to-speech (TTS) systems. We present NVSpeech, an integrated and scalable pipeline that bridges the recognition and synthesis of paralinguistic vocalizations, encompassing dataset construction, ASR modeling, and controllable TTS. (1) We introduce a manually annotated dataset of 48,430 human-spoken utterances with 18 word-level paralinguistic categories. (2) We develop the paralinguistic-aware ASR model, which treats paralinguistic cues as inline decodable tokens (e.g., "You're so funny [Laughter]"), enabling joint lexical and non-verbal transcription. This model is then used to automatically annotate a large corpus, the first large-scale Chinese dataset of 174,179 utterances (573 hours) with word-level alignment and paralingustic cues. (3) We finetune zero-shot TTS models on both human- and auto-labeled data to enable explicit control over paralinguistic vocalizations, allowing context-aware insertion at arbitrary token positions for human-like speech synthesis. By unifying the recognition and generation of paralinguistic vocalizations, NVSpeech offers the first open, large-scale, word-level annotated pipeline for expressive speech modeling in Mandarin, integrating recognition and synthesis in a scalable and controllable manner. Dataset and audio demos are available at https://nvspeech170k.github.io/.

  • 8 authors
·
Aug 6, 2025 2

OpenS2S: Advancing Open-Source End-to-End Empathetic Large Speech Language Model

Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems. The project webpage can be accessed at https://casia-lm.github.io/OpenS2S

  • 11 authors
·
Jul 7, 2025

Towards Authentic Movie Dubbing with Retrieve-Augmented Director-Actor Interaction Learning

The automatic movie dubbing model generates vivid speech from given scripts, replicating a speaker's timbre from a brief timbre prompt while ensuring lip-sync with the silent video. Existing approaches simulate a simplified workflow where actors dub directly without preparation, overlooking the critical director-actor interaction. In contrast, authentic workflows involve a dynamic collaboration: directors actively engage with actors, guiding them to internalize the context cues, specifically emotion, before performance. To address this issue, we propose a new Retrieve-Augmented Director-Actor Interaction Learning scheme to achieve authentic movie dubbing, termed Authentic-Dubber, which contains three novel mechanisms: (1) We construct a multimodal Reference Footage library to simulate the learning footage provided by directors. Note that we integrate Large Language Models (LLMs) to achieve deep comprehension of emotional representations across multimodal signals. (2) To emulate how actors efficiently and comprehensively internalize director-provided footage during dubbing, we propose an Emotion-Similarity-based Retrieval-Augmentation strategy. This strategy retrieves the most relevant multimodal information that aligns with the target silent video. (3) We develop a Progressive Graph-based speech generation approach that incrementally incorporates the retrieved multimodal emotional knowledge, thereby simulating the actor's final dubbing process. The above mechanisms enable the Authentic-Dubber to faithfully replicate the authentic dubbing workflow, achieving comprehensive improvements in emotional expressiveness. Both subjective and objective evaluations on the V2C Animation benchmark dataset validate the effectiveness. The code and demos are available at https://github.com/AI-S2-Lab/Authentic-Dubber.

  • 3 authors
·
Nov 18, 2025

Step-Audio: Unified Understanding and Generation in Intelligent Speech Interaction

Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.

  • 121 authors
·
Feb 17, 2025

X-Actor: Emotional and Expressive Long-Range Portrait Acting from Audio

We present X-Actor, a novel audio-driven portrait animation framework that generates lifelike, emotionally expressive talking head videos from a single reference image and an input audio clip. Unlike prior methods that emphasize lip synchronization and short-range visual fidelity in constrained speaking scenarios, X-Actor enables actor-quality, long-form portrait performance capturing nuanced, dynamically evolving emotions that flow coherently with the rhythm and content of speech. Central to our approach is a two-stage decoupled generation pipeline: an audio-conditioned autoregressive diffusion model that predicts expressive yet identity-agnostic facial motion latent tokens within a long temporal context window, followed by a diffusion-based video synthesis module that translates these motions into high-fidelity video animations. By operating in a compact facial motion latent space decoupled from visual and identity cues, our autoregressive diffusion model effectively captures long-range correlations between audio and facial dynamics through a diffusion-forcing training paradigm, enabling infinite-length emotionally-rich motion prediction without error accumulation. Extensive experiments demonstrate that X-Actor produces compelling, cinematic-style performances that go beyond standard talking head animations and achieves state-of-the-art results in long-range, audio-driven emotional portrait acting.

  • 11 authors
·
Aug 4, 2025

Seamless: Multilingual Expressive and Streaming Speech Translation

Large-scale automatic speech translation systems today lack key features that help machine-mediated communication feel seamless when compared to human-to-human dialogue. In this work, we introduce a family of models that enable end-to-end expressive and multilingual translations in a streaming fashion. First, we contribute an improved version of the massively multilingual and multimodal SeamlessM4T model-SeamlessM4T v2. This newer model, incorporating an updated UnitY2 framework, was trained on more low-resource language data. SeamlessM4T v2 provides the foundation on which our next two models are initiated. SeamlessExpressive enables translation that preserves vocal styles and prosody. Compared to previous efforts in expressive speech research, our work addresses certain underexplored aspects of prosody, such as speech rate and pauses, while also preserving the style of one's voice. As for SeamlessStreaming, our model leverages the Efficient Monotonic Multihead Attention mechanism to generate low-latency target translations without waiting for complete source utterances. As the first of its kind, SeamlessStreaming enables simultaneous speech-to-speech/text translation for multiple source and target languages. To ensure that our models can be used safely and responsibly, we implemented the first known red-teaming effort for multimodal machine translation, a system for the detection and mitigation of added toxicity, a systematic evaluation of gender bias, and an inaudible localized watermarking mechanism designed to dampen the impact of deepfakes. Consequently, we bring major components from SeamlessExpressive and SeamlessStreaming together to form Seamless, the first publicly available system that unlocks expressive cross-lingual communication in real-time. The contributions to this work are publicly released and accessible at https://github.com/facebookresearch/seamless_communication

  • 65 authors
·
Dec 8, 2023 3

FireRedChat: A Pluggable, Full-Duplex Voice Interaction System with Cascaded and Semi-Cascaded Implementations

Full-duplex voice interaction allows users and agents to speak simultaneously with controllable barge-in, enabling lifelike assistants and customer service. Existing solutions are either end-to-end, difficult to design and hard to control, or modular pipelines governed by turn-taking controllers that ease upgrades and per-module optimization; however, prior modular frameworks depend on non-open components and external providers, limiting holistic optimization. In this work, we present a complete, practical full-duplex voice interaction system comprising a turn-taking controller, an interaction module, and a dialogue manager. The controller integrates streaming personalized VAD (pVAD) to suppress false barge-ins from noise and non-primary speakers, precisely timestamp primary-speaker segments, and explicitly enable primary-speaker barge-ins; a semantic end-of-turn detector improves stop decisions. It upgrades heterogeneous half-duplex pipelines, cascaded, semi-cascaded, and speech-to-speech, to full duplex. Using internal models, we implement cascaded and semi-cascaded variants; the semi-cascaded one captures emotional and paralinguistic cues, yields more coherent responses, lowers latency and error propagation, and improves robustness. A dialogue manager extends capabilities via tool invocation and context management. We also propose three system-level metrics, barge-in, end-of-turn detection accuracy, and end-to-end latency, to assess naturalness, control accuracy, and efficiency. Experiments show fewer false interruptions, more accurate semantic ends, and lower latency approaching industrial systems, enabling robust, natural, real-time full-duplex interaction. Demos: https://fireredteam.github.io/demos/firered_chat.

  • 15 authors
·
Sep 8, 2025

SpeechCraft: A Fine-grained Expressive Speech Dataset with Natural Language Description

Speech-language multi-modal learning presents a significant challenge due to the fine nuanced information inherent in speech styles. Therefore, a large-scale dataset providing elaborate comprehension of speech style is urgently needed to facilitate insightful interplay between speech audio and natural language. However, constructing such datasets presents a major trade-off between large-scale data collection and high-quality annotation. To tackle this challenge, we propose an automatic speech annotation system for expressiveness interpretation that annotates in-the-wild speech clips with expressive and vivid human language descriptions. Initially, speech audios are processed by a series of expert classifiers and captioning models to capture diverse speech characteristics, followed by a fine-tuned LLaMA for customized annotation generation. Unlike previous tag/templet-based annotation frameworks with limited information and diversity, our system provides in-depth understandings of speech style through tailored natural language descriptions, thereby enabling accurate and voluminous data generation for large model training. With this system, we create SpeechCraft, a fine-grained bilingual expressive speech dataset. It is distinguished by highly descriptive natural language style prompts, containing approximately 2,000 hours of audio data and encompassing over two million speech clips. Extensive experiments demonstrate that the proposed dataset significantly boosts speech-language task performance in stylist speech synthesis and speech style understanding.

  • 8 authors
·
Aug 24, 2024

UniSS: Unified Expressive Speech-to-Speech Translation with Your Voice

The ultimate goal of expressive speech-to-speech translation (S2ST) is to accurately translate spoken content while preserving the speaker identity and emotional style. However, progress in this field is largely hindered by three key challenges: the scarcity of paired speech data that retains expressive styles, the complexity of multi-stage processing pipelines, and the limited transfer of translation capabilities from large language models (LLMs). In this work, we address these challenges by introducing UniSS, a novel single-stage framework for expressive S2ST. Our approach features carefully designed speech semantic and style modeling, enabling seamless integration with existing text-based LLM frameworks to develop a unified text-speech language model. To transfer translation capabilities from text to speech, we propose a cross-modal chain-of-thought prompting process that progressively aligns audio semantics with text and ensures style preservation in the decoded results. Furthermore, we construct and release a large-scale, high-quality expressive S2ST dataset, UniST, comprising 44.8k hours of data. Experimental results show that UniSS significantly outperforms previous methods in translation fidelity and speech quality while preserving voice, emotion, and duration consistency. Our work establishes a simpler and more effective paradigm for building the next generation of expressive S2ST systems. Audio samples are available at https://cmots.github.io/uniss-demo.

  • 8 authors
·
Sep 25, 2025