- Defending Large Language Models Against Jailbreak Exploits with Responsible AI Considerations Large Language Models (LLMs) remain susceptible to jailbreak exploits that bypass safety filters and induce harmful or unethical behavior. This work presents a systematic taxonomy of existing jailbreak defenses across prompt-level, model-level, and training-time interventions, followed by three proposed defense strategies. First, a Prompt-Level Defense Framework detects and neutralizes adversarial inputs through sanitization, paraphrasing, and adaptive system guarding. Second, a Logit-Based Steering Defense reinforces refusal behavior through inference-time vector steering in safety-sensitive layers. Third, a Domain-Specific Agent Defense employs the MetaGPT framework to enforce structured, role-based collaboration and domain adherence. Experiments on benchmark datasets show substantial reductions in attack success rate, achieving full mitigation under the agent-based defense. Overall, this study highlights how jailbreaks pose a significant security threat to LLMs and identifies key intervention points for prevention, while noting that defense strategies often involve trade-offs between safety, performance, and scalability. Code is available at: https://github.com/Kuro0911/CS5446-Project 5 authors · Nov 24, 2025
- PromptSleuth: Detecting Prompt Injection via Semantic Intent Invariance Large Language Models (LLMs) are increasingly integrated into real-world applications, from virtual assistants to autonomous agents. However, their flexibility also introduces new attack vectors-particularly Prompt Injection (PI), where adversaries manipulate model behavior through crafted inputs. As attackers continuously evolve with paraphrased, obfuscated, and even multi-task injection strategies, existing benchmarks are no longer sufficient to capture the full spectrum of emerging threats. To address this gap, we construct a new benchmark that systematically extends prior efforts. Our benchmark subsumes the two widely-used existing ones while introducing new manipulation techniques and multi-task scenarios, thereby providing a more comprehensive evaluation setting. We find that existing defenses, though effective on their original benchmarks, show clear weaknesses under our benchmark, underscoring the need for more robust solutions. Our key insight is that while attack forms may vary, the adversary's intent-injecting an unauthorized task-remains invariant. Building on this observation, we propose PromptSleuth, a semantic-oriented defense framework that detects prompt injection by reasoning over task-level intent rather than surface features. Evaluated across state-of-the-art benchmarks, PromptSleuth consistently outperforms existing defense while maintaining comparable runtime and cost efficiency. These results demonstrate that intent-based semantic reasoning offers a robust, efficient, and generalizable strategy for defending LLMs against evolving prompt injection threats. 3 authors · Aug 28, 2025
- Beyond Surface-Level Detection: Towards Cognitive-Driven Defense Against Jailbreak Attacks via Meta-Operations Reasoning Defending large language models (LLMs) against jailbreak attacks is essential for their safe and reliable deployment. Existing defenses often rely on shallow pattern matching, which struggles to generalize to novel and unseen attack strategies. To address this challenge, we propose the Cognitive-Driven Defense (CDD) framework, which targets the underlying structure of jailbreak prompts by applying meta-operations, defined as basic manipulations that conceal harmful intent.CDD emulates human cognitive reasoning through a structured reasoning chain. It begins with a global perception of the prompt and follows with a localized analysis to uncover hidden manipulations. By applying supervised fine-tuning on this structured chain, the model learns to identify and reason about known manipulation patterns. To enhance generalization to unseen threats, an entropy-guided reinforcement learning algorithm (EG-GRPO) is introduced to encourage exploration of new types and variants of meta-operations. Experiments demonstrate that CDD can achieve state-of-the-art defense performance and exhibit strong generalization to unseen jailbreak attacks. 6 authors · Aug 4, 2025