2 SPBERT: An Efficient Pre-training BERT on SPARQL Queries for Question Answering over Knowledge Graphs In this paper, we propose SPBERT, a transformer-based language model pre-trained on massive SPARQL query logs. By incorporating masked language modeling objectives and the word structural objective, SPBERT can learn general-purpose representations in both natural language and SPARQL query language. We investigate how SPBERT and encoder-decoder architecture can be adapted for Knowledge-based QA corpora. We conduct exhaustive experiments on two additional tasks, including SPARQL Query Construction and Answer Verbalization Generation. The experimental results show that SPBERT can obtain promising results, achieving state-of-the-art BLEU scores on several of these tasks. 5 authors · Jun 18, 2021
2 Reducing Hallucinations in Language Model-based SPARQL Query Generation Using Post-Generation Memory Retrieval The ability to generate SPARQL queries from natural language questions is crucial for ensuring efficient and accurate retrieval of structured data from knowledge graphs (KG). While large language models (LLMs) have been widely adopted for SPARQL query generation, they are often susceptible to hallucinations and out-of-distribution errors when producing KG elements like Uniform Resource Identifiers (URIs) based on internal parametric knowledge. This often results in content that appears plausible but is factually incorrect, posing significant challenges for their use in real-world information retrieval (IR) applications. This has led to increased research aimed at detecting and mitigating such errors. In this paper, we introduce PGMR (Post-Generation Memory Retrieval), a modular framework that incorporates a non-parametric memory module to retrieve KG elements and enhance LLM-based SPARQL query generation. Our experimental results indicate that PGMR consistently delivers strong performance across diverse datasets, data distributions, and LLMs. Notably, PGMR significantly mitigates URI hallucinations, nearly eliminating the problem in several scenarios. 4 authors · Feb 18, 2025 2
- FIRESPARQL: A LLM-based Framework for SPARQL Query Generation over Scholarly Knowledge Graphs Question answering over Scholarly Knowledge Graphs (SKGs) remains a challenging task due to the complexity of scholarly content and the intricate structure of these graphs. Large Language Model (LLM) approaches could be used to translate natural language questions (NLQs) into SPARQL queries; however, these LLM-based approaches struggle with SPARQL query generation due to limited exposure to SKG-specific content and the underlying schema. We identified two main types of errors in the LLM-generated SPARQL queries: (i) structural inconsistencies, such as missing or redundant triples in the queries, and (ii) semantic inaccuracies, where incorrect entities or properties are shown in the queries despite a correct query structure. To address these issues, we propose FIRESPARQL, a modular framework that supports fine-tuned LLMs as a core component, with optional context provided via retrieval-augmented generation (RAG) and a SPARQL query correction layer. We evaluate the framework on the SciQA Benchmark using various configurations (zero-shot, zero-shot with RAG, one-shot, fine-tuning, and fine-tuning with RAG) and compare the performance with baseline and state-of-the-art approaches. We measure query accuracy using BLEU and ROUGE metrics, and query result accuracy using relaxed exact match(RelaxedEM), with respect to the gold standards containing the NLQs, SPARQL queries, and the results of the queries. Experimental results demonstrate that fine-tuning achieves the highest overall performance, reaching 0.90 ROUGE-L for query accuracy and 0.85 RelaxedEM for result accuracy on the test set. 3 authors · Aug 14, 2025
- SPARQL as a Foreign Language In the last years, the Linked Data Cloud has achieved a size of more than 100 billion facts pertaining to a multitude of domains. However, accessing this information has been significantly challenging for lay users. Approaches to problems such as Question Answering on Linked Data and Link Discovery have notably played a role in increasing information access. These approaches are often based on handcrafted and/or statistical models derived from data observation. Recently, Deep Learning architectures based on Neural Networks called seq2seq have shown to achieve state-of-the-art results at translating sequences into sequences. In this direction, we propose Neural SPARQL Machines, end-to-end deep architectures to translate any natural language expression into sentences encoding SPARQL queries. Our preliminary results, restricted on selected DBpedia classes, show that Neural SPARQL Machines are a promising approach for Question Answering on Linked Data, as they can deal with known problems such as vocabulary mismatch and perform graph pattern composition. 7 authors · Aug 25, 2017
- Exploring Sequence-to-Sequence Models for SPARQL Pattern Composition A booming amount of information is continuously added to the Internet as structured and unstructured data, feeding knowledge bases such as DBpedia and Wikidata with billions of statements describing millions of entities. The aim of Question Answering systems is to allow lay users to access such data using natural language without needing to write formal queries. However, users often submit questions that are complex and require a certain level of abstraction and reasoning to decompose them into basic graph patterns. In this short paper, we explore the use of architectures based on Neural Machine Translation called Neural SPARQL Machines to learn pattern compositions. We show that sequence-to-sequence models are a viable and promising option to transform long utterances into complex SPARQL queries. 3 authors · Oct 21, 2020
2 Increasing the LLM Accuracy for Question Answering: Ontologies to the Rescue! There is increasing evidence that question-answering (QA) systems with Large Language Models (LLMs), which employ a knowledge graph/semantic representation of an enterprise SQL database (i.e. Text-to-SPARQL), achieve higher accuracy compared to systems that answer questions directly on SQL databases (i.e. Text-to-SQL). Our previous benchmark research showed that by using a knowledge graph, the accuracy improved from 16% to 54%. The question remains: how can we further improve the accuracy and reduce the error rate? Building on the observations of our previous research where the inaccurate LLM-generated SPARQL queries followed incorrect paths, we present an approach that consists of 1) Ontology-based Query Check (OBQC): detects errors by leveraging the ontology of the knowledge graph to check if the LLM-generated SPARQL query matches the semantic of ontology and 2) LLM Repair: use the error explanations with an LLM to repair the SPARQL query. Using the chat with the data benchmark, our primary finding is that our approach increases the overall accuracy to 72% including an additional 8% of "I don't know" unknown results. Thus, the overall error rate is 20%. These results provide further evidence that investing knowledge graphs, namely the ontology, provides higher accuracy for LLM powered question answering systems. 2 authors · May 19, 2024
- ARUQULA -- An LLM based Text2SPARQL Approach using ReAct and Knowledge Graph Exploration Utilities Interacting with knowledge graphs can be a daunting task for people without a background in computer science since the query language that is used (SPARQL) has a high barrier of entry. Large language models (LLMs) can lower that barrier by providing support in the form of Text2SPARQL translation. In this paper we introduce a generalized method based on SPINACH, an LLM backed agent that translates natural language questions to SPARQL queries not in a single shot, but as an iterative process of exploration and execution. We describe the overall architecture and reasoning behind our design decisions, and also conduct a thorough analysis of the agent behavior to gain insights into future areas for targeted improvements. This work was motivated by the Text2SPARQL challenge, a challenge that was held to facilitate improvements in the Text2SPARQL domain. 7 authors · Oct 2, 2025
- Leveraging small language models for Text2SPARQL tasks to improve the resilience of AI assistance In this work we will show that language models with less than one billion parameters can be used to translate natural language to SPARQL queries after fine-tuning. Using three different datasets ranging from academic to real world, we identify prerequisites that the training data must fulfill in order for the training to be successful. The goal is to empower users of semantic web technology to use AI assistance with affordable commodity hardware, making them more resilient against external factors. 3 authors · May 27, 2024
- QALD-9-plus: A Multilingual Dataset for Question Answering over DBpedia and Wikidata Translated by Native Speakers The ability to have the same experience for different user groups (i.e., accessibility) is one of the most important characteristics of Web-based systems. The same is true for Knowledge Graph Question Answering (KGQA) systems that provide the access to Semantic Web data via natural language interface. While following our research agenda on the multilingual aspect of accessibility of KGQA systems, we identified several ongoing challenges. One of them is the lack of multilingual KGQA benchmarks. In this work, we extend one of the most popular KGQA benchmarks - QALD-9 by introducing high-quality questions' translations to 8 languages provided by native speakers, and transferring the SPARQL queries of QALD-9 from DBpedia to Wikidata, s.t., the usability and relevance of the dataset is strongly increased. Five of the languages - Armenian, Ukrainian, Lithuanian, Bashkir and Belarusian - to our best knowledge were never considered in KGQA research community before. The latter two of the languages are considered as "endangered" by UNESCO. We call the extended dataset QALD-9-plus and made it available online https://github.com/Perevalov/qald_9_plus. 4 authors · Jan 31, 2022
- RuBQ: A Russian Dataset for Question Answering over Wikidata The paper presents RuBQ, the first Russian knowledge base question answering (KBQA) dataset. The high-quality dataset consists of 1,500 Russian questions of varying complexity, their English machine translations, SPARQL queries to Wikidata, reference answers, as well as a Wikidata sample of triples containing entities with Russian labels. The dataset creation started with a large collection of question-answer pairs from online quizzes. The data underwent automatic filtering, crowd-assisted entity linking, automatic generation of SPARQL queries, and their subsequent in-house verification. 2 authors · May 21, 2020
- Assessing SPARQL capabilities of Large Language Models The integration of Large Language Models (LLMs) with Knowledge Graphs (KGs) offers significant synergistic potential for knowledge-driven applications. One possible integration is the interpretation and generation of formal languages, such as those used in the Semantic Web, with SPARQL being a core technology for accessing KGs. In this paper, we focus on measuring out-of-the box capabilities of LLMs to work with SPARQL and more specifically with SPARQL SELECT queries applying a quantitative approach. We implemented various benchmarking tasks in the LLM-KG-Bench framework for automated execution and evaluation with several LLMs. The tasks assess capabilities along the dimensions of syntax, semantic read, semantic create, and the role of knowledge graph prompt inclusion. With this new benchmarking tasks, we evaluated a selection of GPT, Gemini, and Claude models. Our findings indicate that working with SPARQL SELECT queries is still challenging for LLMs and heavily depends on the specific LLM as well as the complexity of the task. While fixing basic syntax errors seems to pose no problems for the best of the current LLMs evaluated, creating semantically correct SPARQL SELECT queries is difficult in several cases. 4 authors · Sep 9, 2024
- All You Need Is CONSTRUCT In SPARQL, the query forms SELECT and CONSTRUCT have been the subject of several studies, both theoretical and practical. However, the composition of such queries and their interweaving when forming involved nested queries has not yet received much interest in the literature. We mainly tackle the problem of composing such queries. For this purpose, we introduce a language close to SPARQL where queries can be nested at will, involving either CONSTRUCT or SELECT query forms and provide a formal semantics for it. This semantics is based on a uniform interpretation of queries. This uniformity is due to an extension of the notion of RDF graphs to include isolated items such as variables. As a key feature of this work, we show how classical SELECT queries can be easily encoded as a particular case of CONSTRUCT queries. 3 authors · Oct 2, 2020
1 InteracSPARQL: An Interactive System for SPARQL Query Refinement Using Natural Language Explanations In recent years, querying semantic web data using SPARQL has remained challenging, especially for non-expert users, due to the language's complex syntax and the prerequisite of understanding intricate data structures. To address these challenges, we propose InteracSPARQL, an interactive SPARQL query generation and refinement system that leverages natural language explanations (NLEs) to enhance user comprehension and facilitate iterative query refinement. InteracSPARQL integrates LLMs with a rule-based approach to first produce structured explanations directly from SPARQL abstract syntax trees (ASTs), followed by LLM-based linguistic refinements. Users can interactively refine queries through direct feedback or LLM-driven self-refinement, enabling the correction of ambiguous or incorrect query components in real time. We evaluate InteracSPARQL on standard benchmarks, demonstrating significant improvements in query accuracy, explanation clarity, and overall user satisfaction compared to baseline approaches. Our experiments further highlight the effectiveness of combining rule-based methods with LLM-driven refinements to create more accessible and robust SPARQL interfaces. 3 authors · Nov 3, 2025
- Uncertainty-Aware Text-to-Program for Question Answering on Structured Electronic Health Records Question Answering on Electronic Health Records (EHR-QA) has a significant impact on the healthcare domain, and it is being actively studied. Previous research on structured EHR-QA focuses on converting natural language queries into query language such as SQL or SPARQL (NLQ2Query), so the problem scope is limited to pre-defined data types by the specific query language. In order to expand the EHR-QA task beyond this limitation to handle multi-modal medical data and solve complex inference in the future, more primitive systemic language is needed. In this paper, we design the program-based model (NLQ2Program) for EHR-QA as the first step towards the future direction. We tackle MIMICSPARQL*, the graph-based EHR-QA dataset, via a program-based approach in a semi-supervised manner in order to overcome the absence of gold programs. Without the gold program, our proposed model shows comparable performance to the previous state-of-the-art model, which is an NLQ2Query model (0.9% gain). In addition, for a reliable EHR-QA model, we apply the uncertainty decomposition method to measure the ambiguity in the input question. We empirically confirmed data uncertainty is most indicative of the ambiguity in the input question. 4 authors · Mar 14, 2022
- Wikidata-lite for Knowledge Extraction and Exploration Wikidata is the largest collaborative general knowledge graph supported by a worldwide community. It includes many helpful topics for knowledge exploration and data science applications. However, due to the enormous size of Wikidata, it is challenging to retrieve a large amount of data with millions of results, make complex queries requiring large aggregation operations, or access too many statement references. This paper introduces our preliminary works on Wikidata-lite, a toolkit to build a database offline for knowledge extraction and exploration, e.g., retrieving item information, statements, provenances, or searching entities by their keywords and attributes. Wikidata-lite has high performance and memory efficiency, much faster than the official Wikidata SPARQL endpoint for big queries. The Wikidata-lite repository is available at https://github.com/phucty/wikidb. 2 authors · Nov 10, 2022