21 VARCO-VISION: Expanding Frontiers in Korean Vision-Language Models In this paper, we introduce an open-source Korean-English vision-language model (VLM), VARCO-VISION. We incorporate a step-by-step training strategy that allows a model learn both linguistic and visual information while preserving the backbone model's knowledge. Our model demonstrates outstanding performance in diverse settings requiring bilingual image-text understanding and generation abilities compared to models of similar size. VARCO-VISION is also capable of grounding, referring, and OCR, expanding its usage and potential applications for real-world scenarios. In addition to the model, we release five Korean evaluation datasets, including four closed-set and one openset benchmarks. We anticipate that our milestone will broaden the opportunities for AI researchers aiming to train VLMs. VARCO-VISION is available at https://huggingface.co/NCSOFT/VARCO-VISION-14B. 4 authors · Nov 28, 2024 2
7 Varco Arena: A Tournament Approach to Reference-Free Benchmarking Large Language Models The rapid advancement of Large Language Models (LLMs) necessitates robust evaluation methodologies. Current benchmarking approaches often rely on comparing model outputs against predefined prompts and reference outputs. Relying on predefined reference outputs hinders flexible adaptation of benchmarks to the rapidly evolving capabilities of LLMs. This limitation necessitates periodic efforts to prepare new benchmarks. To keep pace with rapidly evolving LLM capabilities, we propose a more flexible benchmarking approach. Our method, \textbf{Varco Arena}, provides reference-free benchmarking of LLMs in tournament style. \textbf{Varco Arena} directly compares LLM outputs across a diverse set of prompts, determining model rankings through a single-elimination tournament structure. This direct pairwise comparison offers two key advantages: (1) Direct comparison, unmediated by reference text, more effectively orders competing LLMs, resulting in more reliable rankings, and (2) reference-free approach to benchmarking adds flexibility in updating benchmark prompts by eliminating the need for quality references. Our empirical results, supported by simulation experiments, demonstrate that the \textbf{Varco Arena} tournament approach aligns better with the current Elo model for benchmarking LLMs. The alignment is measured in terms of Spearman correlation, showing improvement over current practice of benchmarking that use reference outputs as comparison anchors. 6 authors · Nov 2, 2024
6 VARCO-VISION-2.0 Technical Report We introduce VARCO-VISION-2.0, an open-weight bilingual vision-language model (VLM) for Korean and English with improved capabilities compared to the previous model VARCO-VISION-14B. The model supports multi-image understanding for complex inputs such as documents, charts, and tables, and delivers layoutaware OCR by predicting both textual content and its spatial location. Trained with a four-stage curriculum with memory-efficient techniques, the model achieves enhanced multimodal alignment, while preserving core language abilities and improving safety via preference optimization. Extensive benchmark evaluations demonstrate strong spatial grounding and competitive results for both languages, with the 14B model achieving 8th place on the OpenCompass VLM leaderboard among models of comparable scale. Alongside the 14B-scale model, we release a 1.7B version optimized for on-device deployment. We believe these models advance the development of bilingual VLMs and their practical applications. Two variants of VARCO-VISION-2.0 are available at Hugging Face: a full-scale 14B model and a lightweight 1.7B model. 6 authors · Sep 12, 2025
- VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning Variable names are critical for conveying intended program behavior. Machine learning-based program analysis methods use variable name representations for a wide range of tasks, such as suggesting new variable names and bug detection. Ideally, such methods could capture semantic relationships between names beyond syntactic similarity, e.g., the fact that the names average and mean are similar. Unfortunately, previous work has found that even the best of previous representation approaches primarily capture relatedness (whether two variables are linked at all), rather than similarity (whether they actually have the same meaning). We propose VarCLR, a new approach for learning semantic representations of variable names that effectively captures variable similarity in this stricter sense. We observe that this problem is an excellent fit for contrastive learning, which aims to minimize the distance between explicitly similar inputs, while maximizing the distance between dissimilar inputs. This requires labeled training data, and thus we construct a novel, weakly-supervised variable renaming dataset mined from GitHub edits. We show that VarCLR enables the effective application of sophisticated, general-purpose language models like BERT, to variable name representation and thus also to related downstream tasks like variable name similarity search or spelling correction. VarCLR produces models that significantly outperform the state-of-the-art on IdBench, an existing benchmark that explicitly captures variable similarity (as distinct from relatedness). Finally, we contribute a release of all data, code, and pre-trained models, aiming to provide a drop-in replacement for variable representations used in either existing or future program analyses that rely on variable names. 6 authors · Dec 5, 2021