Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMultiClaimNet: A Massively Multilingual Dataset of Fact-Checked Claim Clusters
In the context of fact-checking, claims are often repeated across various platforms and in different languages, which can benefit from a process that reduces this redundancy. While retrieving previously fact-checked claims has been investigated as a solution, the growing number of unverified claims and expanding size of fact-checked databases calls for alternative, more efficient solutions. A promising solution is to group claims that discuss the same underlying facts into clusters to improve claim retrieval and validation. However, research on claim clustering is hindered by the lack of suitable datasets. To bridge this gap, we introduce MultiClaimNet, a collection of three multilingual claim cluster datasets containing claims in 86 languages across diverse topics. Claim clusters are formed automatically from claim-matching pairs with limited manual intervention. We leverage two existing claim-matching datasets to form the smaller datasets within MultiClaimNet. To build the larger dataset, we propose and validate an approach involving retrieval of approximate nearest neighbors to form candidate claim pairs and an automated annotation of claim similarity using large language models. This larger dataset contains 85.3K fact-checked claims written in 78 languages. We further conduct extensive experiments using various clustering techniques and sentence embedding models to establish baseline performance. Our datasets and findings provide a strong foundation for scalable claim clustering, contributing to efficient fact-checking pipelines.
PatentMatch: A Dataset for Matching Patent Claims & Prior Art
Patent examiners need to solve a complex information retrieval task when they assess the novelty and inventive step of claims made in a patent application. Given a claim, they search for prior art, which comprises all relevant publicly available information. This time-consuming task requires a deep understanding of the respective technical domain and the patent-domain-specific language. For these reasons, we address the computer-assisted search for prior art by creating a training dataset for supervised machine learning called PatentMatch. It contains pairs of claims from patent applications and semantically corresponding text passages of different degrees from cited patent documents. Each pair has been labeled by technically-skilled patent examiners from the European Patent Office. Accordingly, the label indicates the degree of semantic correspondence (matching), i.e., whether the text passage is prejudicial to the novelty of the claimed invention or not. Preliminary experiments using a baseline system show that PatentMatch can indeed be used for training a binary text pair classifier on this challenging information retrieval task. The dataset is available online: https://hpi.de/naumann/s/patentmatch.
Combining Fact Extraction and Verification with Neural Semantic Matching Networks
The increasing concern with misinformation has stimulated research efforts on automatic fact checking. The recently-released FEVER dataset introduced a benchmark fact-verification task in which a system is asked to verify a claim using evidential sentences from Wikipedia documents. In this paper, we present a connected system consisting of three homogeneous neural semantic matching models that conduct document retrieval, sentence selection, and claim verification jointly for fact extraction and verification. For evidence retrieval (document retrieval and sentence selection), unlike traditional vector space IR models in which queries and sources are matched in some pre-designed term vector space, we develop neural models to perform deep semantic matching from raw textual input, assuming no intermediate term representation and no access to structured external knowledge bases. We also show that Pageview frequency can also help improve the performance of evidence retrieval results, that later can be matched by using our neural semantic matching network. For claim verification, unlike previous approaches that simply feed upstream retrieved evidence and the claim to a natural language inference (NLI) model, we further enhance the NLI model by providing it with internal semantic relatedness scores (hence integrating it with the evidence retrieval modules) and ontological WordNet features. Experiments on the FEVER dataset indicate that (1) our neural semantic matching method outperforms popular TF-IDF and encoder models, by significant margins on all evidence retrieval metrics, (2) the additional relatedness score and WordNet features improve the NLI model via better semantic awareness, and (3) by formalizing all three subtasks as a similar semantic matching problem and improving on all three stages, the complete model is able to achieve the state-of-the-art results on the FEVER test set.
Article Reranking by Memory-Enhanced Key Sentence Matching for Detecting Previously Fact-Checked Claims
False claims that have been previously fact-checked can still spread on social media. To mitigate their continual spread, detecting previously fact-checked claims is indispensable. Given a claim, existing works focus on providing evidence for detection by reranking candidate fact-checking articles (FC-articles) retrieved by BM25. However, these performances may be limited because they ignore the following characteristics of FC-articles: (1) claims are often quoted to describe the checked events, providing lexical information besides semantics; (2) sentence templates to introduce or debunk claims are common across articles, providing pattern information. Models that ignore the two aspects only leverage semantic relevance and may be misled by sentences that describe similar but irrelevant events. In this paper, we propose a novel reranker, MTM (Memory-enhanced Transformers for Matching) to rank FC-articles using key sentences selected with event (lexical and semantic) and pattern information. For event information, we propose a ROUGE-guided Transformer which is finetuned with regression of ROUGE. For pattern information, we generate pattern vectors for matching with sentences. By fusing event and pattern information, we select key sentences to represent an article and then predict if the article fact-checks the given claim using the claim, key sentences, and patterns. Experiments on two real-world datasets show that MTM outperforms existing methods. Human evaluation proves that MTM can capture key sentences for explanations. The code and the dataset are at https://github.com/ICTMCG/MTM.
NoLiMa: Long-Context Evaluation Beyond Literal Matching
Recent large language models (LLMs) support long contexts ranging from 128K to 1M tokens. A popular method for evaluating these capabilities is the needle-in-a-haystack (NIAH) test, which involves retrieving a "needle" (relevant information) from a "haystack" (long irrelevant context). Extensions of this approach include increasing distractors, fact chaining, and in-context reasoning. However, in these benchmarks, models can exploit existing literal matches between the needle and haystack to simplify the task. To address this, we introduce NoLiMa, a benchmark extending NIAH with a carefully designed needle set, where questions and needles have minimal lexical overlap, requiring models to infer latent associations to locate the needle within the haystack. We evaluate 12 popular LLMs that claim to support contexts of at least 128K tokens. While they perform well in short contexts (<1K), performance degrades significantly as context length increases. At 32K, for instance, 10 models drop below 50% of their strong short-length baselines. Even GPT-4o, one of the top-performing exceptions, experiences a reduction from an almost-perfect baseline of 99.3% to 69.7%. Our analysis suggests these declines stem from the increased difficulty the attention mechanism faces in longer contexts when literal matches are absent, making it harder to retrieve relevant information.
HoVer: A Dataset for Many-Hop Fact Extraction And Claim Verification
We introduce HoVer (HOppy VERification), a dataset for many-hop evidence extraction and fact verification. It challenges models to extract facts from several Wikipedia articles that are relevant to a claim and classify whether the claim is Supported or Not-Supported by the facts. In HoVer, the claims require evidence to be extracted from as many as four English Wikipedia articles and embody reasoning graphs of diverse shapes. Moreover, most of the 3/4-hop claims are written in multiple sentences, which adds to the complexity of understanding long-range dependency relations such as coreference. We show that the performance of an existing state-of-the-art semantic-matching model degrades significantly on our dataset as the number of reasoning hops increases, hence demonstrating the necessity of many-hop reasoning to achieve strong results. We hope that the introduction of this challenging dataset and the accompanying evaluation task will encourage research in many-hop fact retrieval and information verification. We make the HoVer dataset publicly available at https://hover-nlp.github.io
SciClaimHunt: A Large Dataset for Evidence-based Scientific Claim Verification
Verifying scientific claims presents a significantly greater challenge than verifying political or news-related claims. Unlike the relatively broad audience for political claims, the users of scientific claim verification systems can vary widely, ranging from researchers testing specific hypotheses to everyday users seeking information on a medication. Additionally, the evidence for scientific claims is often highly complex, involving technical terminology and intricate domain-specific concepts that require specialized models for accurate verification. Despite considerable interest from the research community, there is a noticeable lack of large-scale scientific claim verification datasets to benchmark and train effective models. To bridge this gap, we introduce two large-scale datasets, SciClaimHunt and SciClaimHunt_Num, derived from scientific research papers. We propose several baseline models tailored for scientific claim verification to assess the effectiveness of these datasets. Additionally, we evaluate models trained on SciClaimHunt and SciClaimHunt_Num against existing scientific claim verification datasets to gauge their quality and reliability. Furthermore, we conduct human evaluations of the claims in proposed datasets and perform error analysis to assess the effectiveness of the proposed baseline models. Our findings indicate that SciClaimHunt and SciClaimHunt_Num serve as highly reliable resources for training models in scientific claim verification.
Check_square at CheckThat! 2020: Claim Detection in Social Media via Fusion of Transformer and Syntactic Features
In this digital age of news consumption, a news reader has the ability to react, express and share opinions with others in a highly interactive and fast manner. As a consequence, fake news has made its way into our daily life because of very limited capacity to verify news on the Internet by large companies as well as individuals. In this paper, we focus on solving two problems which are part of the fact-checking ecosystem that can help to automate fact-checking of claims in an ever increasing stream of content on social media. For the first problem, claim check-worthiness prediction, we explore the fusion of syntactic features and deep transformer Bidirectional Encoder Representations from Transformers (BERT) embeddings, to classify check-worthiness of a tweet, i.e. whether it includes a claim or not. We conduct a detailed feature analysis and present our best performing models for English and Arabic tweets. For the second problem, claim retrieval, we explore the pre-trained embeddings from a Siamese network transformer model (sentence-transformers) specifically trained for semantic textual similarity, and perform KD-search to retrieve verified claims with respect to a query tweet.
Salient Phrase Aware Dense Retrieval: Can a Dense Retriever Imitate a Sparse One?
Despite their recent popularity and well-known advantages, dense retrievers still lag behind sparse methods such as BM25 in their ability to reliably match salient phrases and rare entities in the query and to generalize to out-of-domain data. It has been argued that this is an inherent limitation of dense models. We rebut this claim by introducing the Salient Phrase Aware Retriever (SPAR), a dense retriever with the lexical matching capacity of a sparse model. We show that a dense Lexical Model {\Lambda} can be trained to imitate a sparse one, and SPAR is built by augmenting a standard dense retriever with {\Lambda}. Empirically, SPAR shows superior performance on a range of tasks including five question answering datasets, MS MARCO passage retrieval, as well as the EntityQuestions and BEIR benchmarks for out-of-domain evaluation, exceeding the performance of state-of-the-art dense and sparse retrievers. The code and models of SPAR are available at: https://github.com/facebookresearch/dpr-scale/tree/main/spar
R2D2: Repeatable and Reliable Detector and Descriptor
Interest point detection and local feature description are fundamental steps in many computer vision applications. Classical methods for these tasks are based on a detect-then-describe paradigm where separate handcrafted methods are used to first identify repeatable keypoints and then represent them with a local descriptor. Neural networks trained with metric learning losses have recently caught up with these techniques, focusing on learning repeatable saliency maps for keypoint detection and learning descriptors at the detected keypoint locations. In this work, we argue that salient regions are not necessarily discriminative, and therefore can harm the performance of the description. Furthermore, we claim that descriptors should be learned only in regions for which matching can be performed with high confidence. We thus propose to jointly learn keypoint detection and description together with a predictor of the local descriptor discriminativeness. This allows us to avoid ambiguous areas and leads to reliable keypoint detections and descriptions. Our detection-and-description approach, trained with self-supervision, can simultaneously output sparse, repeatable and reliable keypoints that outperforms state-of-the-art detectors and descriptors on the HPatches dataset. It also establishes a record on the recently released Aachen Day-Night localization dataset.
ClaimGen-CN: A Large-scale Chinese Dataset for Legal Claim Generation
Legal claims refer to the plaintiff's demands in a case and are essential to guiding judicial reasoning and case resolution. While many works have focused on improving the efficiency of legal professionals, the research on helping non-professionals (e.g., plaintiffs) remains unexplored. This paper explores the problem of legal claim generation based on the given case's facts. First, we construct ClaimGen-CN, the first dataset for Chinese legal claim generation task, from various real-world legal disputes. Additionally, we design an evaluation metric tailored for assessing the generated claims, which encompasses two essential dimensions: factuality and clarity. Building on this, we conduct a comprehensive zero-shot evaluation of state-of-the-art general and legal-domain large language models. Our findings highlight the limitations of the current models in factual precision and expressive clarity, pointing to the need for more targeted development in this domain. To encourage further exploration of this important task, we will make the dataset publicly available.
PRISM: Patient Records Interpretation for Semantic Clinical Trial Matching using Large Language Models
Clinical trial matching is the task of identifying trials for which patients may be potentially eligible. Typically, this task is labor-intensive and requires detailed verification of patient electronic health records (EHRs) against the stringent inclusion and exclusion criteria of clinical trials. This process is manual, time-intensive, and challenging to scale up, resulting in many patients missing out on potential therapeutic options. Recent advancements in Large Language Models (LLMs) have made automating patient-trial matching possible, as shown in multiple concurrent research studies. However, the current approaches are confined to constrained, often synthetic datasets that do not adequately mirror the complexities encountered in real-world medical data. In this study, we present the first, end-to-end large-scale empirical evaluation of clinical trial matching using real-world EHRs. Our study showcases the capability of LLMs to accurately match patients with appropriate clinical trials. We perform experiments with proprietary LLMs, including GPT-4 and GPT-3.5, as well as our custom fine-tuned model called OncoLLM and show that OncoLLM, despite its significantly smaller size, not only outperforms GPT-3.5 but also matches the performance of qualified medical doctors. All experiments were carried out on real-world EHRs that include clinical notes and available clinical trials from a single cancer center in the United States.
Multilingual Previously Fact-Checked Claim Retrieval
Fact-checkers are often hampered by the sheer amount of online content that needs to be fact-checked. NLP can help them by retrieving already existing fact-checks relevant to the content being investigated. This paper introduces a new multilingual dataset -- MultiClaim -- for previously fact-checked claim retrieval. We collected 28k posts in 27 languages from social media, 206k fact-checks in 39 languages written by professional fact-checkers, as well as 31k connections between these two groups. This is the most extensive and the most linguistically diverse dataset of this kind to date. We evaluated how different unsupervised methods fare on this dataset and its various dimensions. We show that evaluating such a diverse dataset has its complexities and proper care needs to be taken before interpreting the results. We also evaluated a supervised fine-tuning approach, improving upon the unsupervised method significantly.
Towards Effective Extraction and Evaluation of Factual Claims
A common strategy for fact-checking long-form content generated by Large Language Models (LLMs) is extracting simple claims that can be verified independently. Since inaccurate or incomplete claims compromise fact-checking results, ensuring claim quality is critical. However, the lack of a standardized evaluation framework impedes assessment and comparison of claim extraction methods. To address this gap, we propose a framework for evaluating claim extraction in the context of fact-checking along with automated, scalable, and replicable methods for applying this framework, including novel approaches for measuring coverage and decontextualization. We also introduce Claimify, an LLM-based claim extraction method, and demonstrate that it outperforms existing methods under our evaluation framework. A key feature of Claimify is its ability to handle ambiguity and extract claims only when there is high confidence in the correct interpretation of the source text.
Beyond True or False: Retrieval-Augmented Hierarchical Analysis of Nuanced Claims
Claims made by individuals or entities are oftentimes nuanced and cannot be clearly labeled as entirely "true" or "false" -- as is frequently the case with scientific and political claims. However, a claim (e.g., "vaccine A is better than vaccine B") can be dissected into its integral aspects and sub-aspects (e.g., efficacy, safety, distribution), which are individually easier to validate. This enables a more comprehensive, structured response that provides a well-rounded perspective on a given problem while also allowing the reader to prioritize specific angles of interest within the claim (e.g., safety towards children). Thus, we propose ClaimSpect, a retrieval-augmented generation-based framework for automatically constructing a hierarchy of aspects typically considered when addressing a claim and enriching them with corpus-specific perspectives. This structure hierarchically partitions an input corpus to retrieve relevant segments, which assist in discovering new sub-aspects. Moreover, these segments enable the discovery of varying perspectives towards an aspect of the claim (e.g., support, neutral, or oppose) and their respective prevalence (e.g., "how many biomedical papers believe vaccine A is more transportable than B?"). We apply ClaimSpect to a wide variety of real-world scientific and political claims featured in our constructed dataset, showcasing its robustness and accuracy in deconstructing a nuanced claim and representing perspectives within a corpus. Through real-world case studies and human evaluation, we validate its effectiveness over multiple baselines.
Fact or Fiction: Verifying Scientific Claims
We introduce scientific claim verification, a new task to select abstracts from the research literature containing evidence that SUPPORTS or REFUTES a given scientific claim, and to identify rationales justifying each decision. To study this task, we construct SciFact, a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts annotated with labels and rationales. We develop baseline models for SciFact, and demonstrate that simple domain adaptation techniques substantially improve performance compared to models trained on Wikipedia or political news. We show that our system is able to verify claims related to COVID-19 by identifying evidence from the CORD-19 corpus. Our experiments indicate that SciFact will provide a challenging testbed for the development of new systems designed to retrieve and reason over corpora containing specialized domain knowledge. Data and code for this new task are publicly available at https://github.com/allenai/scifact. A leaderboard and COVID-19 fact-checking demo are available at https://scifact.apps.allenai.org.
Towards Better Evaluation for Generated Patent Claims
Patent claims define the scope of protection and establish the legal boundaries of an invention. Drafting these claims is a complex and time-consuming process that usually requires the expertise of skilled patent attorneys, which can form a large access barrier for many small enterprises. To solve these challenges, researchers have investigated the use of large language models (LLMs) for automating patent claim generation. However, existing studies highlight inconsistencies between automated evaluation metrics and human expert assessments. To bridge this gap, we introduce Patent-CE, the first comprehensive benchmark for evaluating patent claims. Patent-CE includes comparative claim evaluations annotated by patent experts, focusing on five key criteria: feature completeness, conceptual clarity, terminology consistency, logical linkage, and overall quality. Additionally, we propose PatClaimEval, a novel multi-dimensional evaluation method specifically designed for patent claims. Our experiments demonstrate that PatClaimEval achieves the highest correlation with human expert evaluations across all assessment criteria among all tested metrics. This research provides the groundwork for more accurate evaluations of automated patent claim generation systems.
Diversity Aware Relevance Learning for Argument Search
In this work, we focus on the problem of retrieving relevant arguments for a query claim covering diverse aspects. State-of-the-art methods rely on explicit mappings between claims and premises, and thus are unable to utilize large available collections of premises without laborious and costly manual annotation. Their diversity approach relies on removing duplicates via clustering which does not directly ensure that the selected premises cover all aspects. This work introduces a new multi-step approach for the argument retrieval problem. Rather than relying on ground-truth assignments, our approach employs a machine learning model to capture semantic relationships between arguments. Beyond that, it aims to cover diverse facets of the query, instead of trying to identify duplicates explicitly. Our empirical evaluation demonstrates that our approach leads to a significant improvement in the argument retrieval task even though it requires less data.
Debating Truth: Debate-driven Claim Verification with Multiple Large Language Model Agents
Claim verification is critical for enhancing digital literacy. However, the state-of-the-art single-LLM methods struggle with complex claim verification that involves multi-faceted evidences. Inspired by real-world fact-checking practices, we propose DebateCV, the first claim verification framework that adopts a debate-driven methodology using multiple LLM agents. In our framework, two Debaters take opposing stances on a claim and engage in multi-round argumentation, while a Moderator evaluates the arguments and renders a verdict with justifications. To further improve the performance of the Moderator, we introduce a novel post-training strategy that leverages synthetic debate data generated by the zero-shot DebateCV, effectively addressing the scarcity of real-world debate-driven claim verification data. Experimental results show that our method outperforms existing claim verification methods under varying levels of evidence quality. Our code and dataset are publicly available at https://anonymous.4open.science/r/DebateCV-6781.
Robust Claim Verification Through Fact Detection
Claim verification can be a challenging task. In this paper, we present a method to enhance the robustness and reasoning capabilities of automated claim verification through the extraction of short facts from evidence. Our novel approach, FactDetect, leverages Large Language Models (LLMs) to generate concise factual statements from evidence and label these facts based on their semantic relevance to the claim and evidence. The generated facts are then combined with the claim and evidence. To train a lightweight supervised model, we incorporate a fact-detection task into the claim verification process as a multitasking approach to improve both performance and explainability. We also show that augmenting FactDetect in the claim verification prompt enhances performance in zero-shot claim verification using LLMs. Our method demonstrates competitive results in the supervised claim verification model by 15% on the F1 score when evaluated for challenging scientific claim verification datasets. We also demonstrate that FactDetect can be augmented with claim and evidence for zero-shot prompting (AugFactDetect) in LLMs for verdict prediction. We show that AugFactDetect outperforms the baseline with statistical significance on three challenging scientific claim verification datasets with an average of 17.3% performance gain compared to the best performing baselines.
Generating Literal and Implied Subquestions to Fact-check Complex Claims
Verifying complex political claims is a challenging task, especially when politicians use various tactics to subtly misrepresent the facts. Automatic fact-checking systems fall short here, and their predictions like "half-true" are not very useful in isolation, since we have no idea which parts of the claim are true and which are not. In this work, we focus on decomposing a complex claim into a comprehensive set of yes-no subquestions whose answers influence the veracity of the claim. We present ClaimDecomp, a dataset of decompositions for over 1000 claims. Given a claim and its verification paragraph written by fact-checkers, our trained annotators write subquestions covering both explicit propositions of the original claim and its implicit facets, such as asking about additional political context that changes our view of the claim's veracity. We study whether state-of-the-art models can generate such subquestions, showing that these models generate reasonable questions to ask, but predicting the comprehensive set of subquestions from the original claim without evidence remains challenging. We further show that these subquestions can help identify relevant evidence to fact-check the full claim and derive the veracity through their answers, suggesting that they can be useful pieces of a fact-checking pipeline.
Retrieval Augmented Fact Verification by Synthesizing Contrastive Arguments
The rapid propagation of misinformation poses substantial risks to public interest. To combat misinformation, large language models (LLMs) are adapted to automatically verify claim credibility. Nevertheless, existing methods heavily rely on the embedded knowledge within LLMs and / or black-box APIs for evidence collection, leading to subpar performance with smaller LLMs or upon unreliable context. In this paper, we propose retrieval augmented fact verification through the synthesis of contrasting arguments (RAFTS). Upon input claims, RAFTS starts with evidence retrieval, where we design a retrieval pipeline to collect and re-rank relevant documents from verifiable sources. Then, RAFTS forms contrastive arguments (i.e., supporting or refuting) conditioned on the retrieved evidence. In addition, RAFTS leverages an embedding model to identify informative demonstrations, followed by in-context prompting to generate the prediction and explanation. Our method effectively retrieves relevant documents as evidence and evaluates arguments from varying perspectives, incorporating nuanced information for fine-grained decision-making. Combined with informative in-context examples as prior, RAFTS achieves significant improvements to supervised and LLM baselines without complex prompts. We demonstrate the effectiveness of our method through extensive experiments, where RAFTS can outperform GPT-based methods with a significantly smaller 7B LLM.
If We May De-Presuppose: Robustly Verifying Claims through Presupposition-Free Question Decomposition
Prior work has shown that presupposition in generated questions can introduce unverified assumptions, leading to inconsistencies in claim verification. Additionally, prompt sensitivity remains a significant challenge for large language models (LLMs), resulting in performance variance as high as 3-6%. While recent advancements have reduced this gap, our study demonstrates that prompt sensitivity remains a persistent issue. To address this, we propose a structured and robust claim verification framework that reasons through presupposition-free, decomposed questions. Extensive experiments across multiple prompts, datasets, and LLMs reveal that even state-of-the-art models remain susceptible to prompt variance and presupposition. Our method consistently mitigates these issues, achieving up to a 2-5% improvement.
fact check AI at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-checked Claim Retrieval
SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval is approached as a Learning-to-Rank task using a bi-encoder model fine-tuned from a pre-trained transformer optimized for sentence similarity. Training used both the source languages and their English translations for multilingual retrieval and only English translations for cross-lingual retrieval. Using lightweight models with fewer than 500M parameters and training on Kaggle T4 GPUs, the method achieved 92% Success@10 in multilingual and 80% Success@10 in 5th in crosslingual and 10th in multilingual tracks.
WiCE: Real-World Entailment for Claims in Wikipedia
Textual entailment models are increasingly applied in settings like fact-checking, presupposition verification in question answering, or summary evaluation. However, these represent a significant domain shift from existing entailment datasets, and models underperform as a result. We propose WiCE, a new fine-grained textual entailment dataset built on natural claim and evidence pairs extracted from Wikipedia. In addition to standard claim-level entailment, WiCE provides entailment judgments over sub-sentence units of the claim, and a minimal subset of evidence sentences that support each subclaim. To support this, we propose an automatic claim decomposition strategy using GPT-3.5 which we show is also effective at improving entailment models' performance on multiple datasets at test time. Finally, we show that real claims in our dataset involve challenging verification and retrieval problems that existing models fail to address.
Claim Extraction for Fact-Checking: Data, Models, and Automated Metrics
In this paper, we explore the problem of Claim Extraction using one-to-many text generation methods, comparing LLMs, small summarization models finetuned for the task, and a previous NER-centric baseline QACG. As the current publications on Claim Extraction, Fact Extraction, Claim Generation and Check-worthy Claim Detection are quite scattered in their means and terminology, we compile their common objectives, releasing the FEVERFact dataset, with 17K atomic factual claims extracted from 4K contextualised Wikipedia sentences, adapted from the original FEVER. We compile the known objectives into an Evaluation framework of: Atomicity, Fluency, Decontextualization, Faithfulness checked for each generated claim separately, and Focus and Coverage measured against the full set of predicted claims for a single input. For each metric, we implement a scale using a reduction to an already-explored NLP task. We validate our metrics against human grading of generic claims, to see that the model ranking on F_{fact}, our hardest metric, did not change and the evaluation framework approximates human grading very closely in terms of F_1 and RMSE.
Patent-CR: A Dataset for Patent Claim Revision
This paper presents Patent-CR, the first dataset created for the patent claim revision task in English. It includes both initial patent applications rejected by patent examiners and the final granted versions. Unlike normal text revision tasks that predominantly focus on enhancing sentence quality, such as grammar correction and coherence improvement, patent claim revision aims at ensuring the claims meet stringent legal criteria. These criteria are beyond novelty and inventiveness, including clarity of scope, technical accuracy, language precision, and legal robustness. We assess various large language models (LLMs) through professional human evaluation, including general LLMs with different sizes and architectures, text revision models, and domain-specific models. Our results indicate that LLMs often bring ineffective edits that deviate from the target revisions. In addition, domain-specific models and the method of fine-tuning show promising results. Notably, GPT-4 outperforms other tested LLMs, but further revisions are still necessary to reach the examination standard. Furthermore, we demonstrate the inconsistency between automated and human evaluation results, suggesting that GPT-4-based automated evaluation has the highest correlation with human judgment. This dataset, along with our preliminary empirical research, offers invaluable insights for further exploration in patent claim revision.
Entity-aware Cross-lingual Claim Detection for Automated Fact-checking
Identifying claims requiring verification is a critical task in automated fact-checking, especially given the proliferation of misinformation on social media platforms. Despite notable progress, challenges remain-particularly in handling multilingual data prevalent in online discourse. Recent efforts have focused on fine-tuning pre-trained multilingual language models to address this. While these models can handle multiple languages, their ability to effectively transfer cross-lingual knowledge for detecting claims spreading on social media remains under-explored. In this paper, we introduce EX-Claim, an entity-aware cross-lingual claim detection model that generalizes well to handle multilingual claims. The model leverages entity information derived from named entity recognition and entity linking techniques to improve the language-level performance of both seen and unseen languages during training. Extensive experiments conducted on three datasets from different social media platforms demonstrate that our proposed model stands out as an effective solution, demonstrating consistent performance gains across 27 languages and robust knowledge transfer between languages seen and unseen during training.
Varifocal Question Generation for Fact-checking
Fact-checking requires retrieving evidence related to a claim under investigation. The task can be formulated as question generation based on a claim, followed by question answering. However, recent question generation approaches assume that the answer is known and typically contained in a passage given as input, whereas such passages are what is being sought when verifying a claim. In this paper, we present {\it Varifocal}, a method that generates questions based on different focal points within a given claim, i.e.\ different spans of the claim and its metadata, such as its source and date. Our method outperforms previous work on a fact-checking question generation dataset on a wide range of automatic evaluation metrics. These results are corroborated by our manual evaluation, which indicates that our method generates more relevant and informative questions. We further demonstrate the potential of focal points in generating sets of clarification questions for product descriptions.
Reasoning-CV: Fine-tuning Powerful Reasoning LLMs for Knowledge-Assisted Claim Verification
Claim verification is essential in combating misinformation, and large language models (LLMs) have recently emerged in this area as powerful tools for assessing the veracity of claims using external knowledge. Existing LLM-based methods for claim verification typically adopt a Decompose-Then-Verify paradigm, which involves decomposing complex claims into several independent sub-claims and verifying each sub-claim separately. However, this paradigm often introduces errors during the claim decomposition process. To mitigate these errors, we propose to develop the Chain-of-Thought (CoT)-Verify paradigm, which leverages LLM reasoning methods to generate CoT-verification paths for the original complex claim without requiring decompositions into sub-claims and separate verification stages. The CoT-Verify paradigm allows us to propose a natural fine-tuning method called Reasoning-CV to enhance the verification capabilities in LLMs. Reasoning-CV includes a supervised fine-tuning (SFT) stage and a self-improvement direct preference optimization (DPO) stage. Utilizing only an 8B pre-trained LLM, Reasoning-CV demonstrates superior knowledge-assisted claim verification performances compared to existing Decompose-Then-Verify methods, as well as powerful black-box LLMs such as GPT-4o+CoT and o1-preview. Our code is available.
HintsOfTruth: A Multimodal Checkworthiness Detection Dataset with Real and Synthetic Claims
Misinformation can be countered with fact-checking, but the process is costly and slow. Identifying checkworthy claims is the first step, where automation can help scale fact-checkers' efforts. However, detection methods struggle with content that is 1) multimodal, 2) from diverse domains, and 3) synthetic. We introduce HintsOfTruth, a public dataset for multimodal checkworthiness detection with 27K real-world and synthetic image/claim pairs. The mix of real and synthetic data makes this dataset unique and ideal for benchmarking detection methods. We compare fine-tuned and prompted Large Language Models (LLMs). We find that well-configured lightweight text-based encoders perform comparably to multimodal models but the first only focus on identifying non-claim-like content. Multimodal LLMs can be more accurate but come at a significant computational cost, making them impractical for large-scale applications. When faced with synthetic data, multimodal models perform more robustly
ClaimVer: Explainable Claim-Level Verification and Evidence Attribution of Text Through Knowledge Graphs
In the midst of widespread misinformation and disinformation through social media and the proliferation of AI-generated texts, it has become increasingly difficult for people to validate and trust information they encounter. Many fact-checking approaches and tools have been developed, but they often lack appropriate explainability or granularity to be useful in various contexts. A text validation method that is easy to use, accessible, and can perform fine-grained evidence attribution has become crucial. More importantly, building user trust in such a method requires presenting the rationale behind each prediction, as research shows this significantly influences people's belief in automated systems. It is also paramount to localize and bring users' attention to the specific problematic content, instead of providing simple blanket labels. In this paper, we present ClaimVer, a human-centric framework tailored to meet users' informational and verification needs by generating rich annotations and thereby reducing cognitive load. Designed to deliver comprehensive evaluations of texts, it highlights each claim, verifies it against a trusted knowledge graph (KG), presents the evidence, and provides succinct, clear explanations for each claim prediction. Finally, our framework introduces an attribution score, enhancing applicability across a wide range of downstream tasks.
AFaCTA: Assisting the Annotation of Factual Claim Detection with Reliable LLM Annotators
With the rise of generative AI, automated fact-checking methods to combat misinformation are becoming more and more important. However, factual claim detection, the first step in a fact-checking pipeline, suffers from two key issues that limit its scalability and generalizability: (1) inconsistency in definitions of the task and what a claim is, and (2) the high cost of manual annotation. To address (1), we review the definitions in related work and propose a unifying definition of factual claims that focuses on verifiability. To address (2), we introduce AFaCTA (Automatic Factual Claim deTection Annotator), a novel framework that assists in the annotation of factual claims with the help of large language models (LLMs). AFaCTA calibrates its annotation confidence with consistency along three predefined reasoning paths. Extensive evaluation and experiments in the domain of political speech reveal that AFaCTA can efficiently assist experts in annotating factual claims and training high-quality classifiers, and can work with or without expert supervision. Our analyses also result in PoliClaim, a comprehensive claim detection dataset spanning diverse political topics.
Can AI Validate Science? Benchmarking LLMs for Accurate Scientific Claim rightarrow Evidence Reasoning
Large language models (LLMs) are increasingly being used for complex research tasks such as literature review, idea generation, and scientific paper analysis, yet their ability to truly understand and process the intricate relationships within complex research papers, such as the logical links between claims and supporting evidence remains largely unexplored. In this study, we present CLAIM-BENCH, a comprehensive benchmark for evaluating LLMs' capabilities in scientific claim-evidence extraction and validation, a task that reflects deeper comprehension of scientific argumentation. We systematically compare three approaches which are inspired by divide and conquer approaches, across six diverse LLMs, highlighting model-specific strengths and weaknesses in scientific comprehension. Through evaluation involving over 300 claim-evidence pairs across multiple research domains, we reveal significant limitations in LLMs' ability to process complex scientific content. Our results demonstrate that closed-source models like GPT-4 and Claude consistently outperform open-source counterparts in precision and recall across claim-evidence identification tasks. Furthermore, strategically designed three-pass and one-by-one prompting approaches significantly improve LLMs' abilities to accurately link dispersed evidence with claims, although this comes at increased computational cost. CLAIM-BENCH sets a new standard for evaluating scientific comprehension in LLMs, offering both a diagnostic tool and a path forward for building systems capable of deeper, more reliable reasoning across full-length papers.
FinDVer: Explainable Claim Verification over Long and Hybrid-Content Financial Documents
We introduce FinDVer, a comprehensive benchmark specifically designed to evaluate the explainable claim verification capabilities of LLMs in the context of understanding and analyzing long, hybrid-content financial documents. FinDVer contains 2,400 expert-annotated examples, divided into three subsets: information extraction, numerical reasoning, and knowledge-intensive reasoning, each addressing common scenarios encountered in real-world financial contexts. We assess a broad spectrum of LLMs under long-context and RAG settings. Our results show that even the current best-performing system, GPT-4o, still lags behind human experts. We further provide in-depth analysis on long-context and RAG setting, Chain-of-Thought reasoning, and model reasoning errors, offering insights to drive future advancements. We believe that FinDVer can serve as a valuable benchmark for evaluating LLMs in claim verification over complex, expert-domain documents.
Scaling Clinical Trial Matching Using Large Language Models: A Case Study in Oncology
Clinical trial matching is a key process in health delivery and discovery. In practice, it is plagued by overwhelming unstructured data and unscalable manual processing. In this paper, we conduct a systematic study on scaling clinical trial matching using large language models (LLMs), with oncology as the focus area. Our study is grounded in a clinical trial matching system currently in test deployment at a large U.S. health network. Initial findings are promising: out of box, cutting-edge LLMs, such as GPT-4, can already structure elaborate eligibility criteria of clinical trials and extract complex matching logic (e.g., nested AND/OR/NOT). While still far from perfect, LLMs substantially outperform prior strong baselines and may serve as a preliminary solution to help triage patient-trial candidates with humans in the loop. Our study also reveals a few significant growth areas for applying LLMs to end-to-end clinical trial matching, such as context limitation and accuracy, especially in structuring patient information from longitudinal medical records.
MultiFC: A Real-World Multi-Domain Dataset for Evidence-Based Fact Checking of Claims
We contribute the largest publicly available dataset of naturally occurring factual claims for the purpose of automatic claim verification. It is collected from 26 fact checking websites in English, paired with textual sources and rich metadata, and labelled for veracity by human expert journalists. We present an in-depth analysis of the dataset, highlighting characteristics and challenges. Further, we present results for automatic veracity prediction, both with established baselines and with a novel method for joint ranking of evidence pages and predicting veracity that outperforms all baselines. Significant performance increases are achieved by encoding evidence, and by modelling metadata. Our best-performing model achieves a Macro F1 of 49.2%, showing that this is a challenging testbed for claim veracity prediction.
FarFetched: Entity-centric Reasoning and Claim Validation for the Greek Language based on Textually Represented Environments
Our collective attention span is shortened by the flood of online information. With FarFetched, we address the need for automated claim validation based on the aggregated evidence derived from multiple online news sources. We introduce an entity-centric reasoning framework in which latent connections between events, actions, or statements are revealed via entity mentions and represented in a graph database. Using entity linking and semantic similarity, we offer a way for collecting and combining information from diverse sources in order to generate evidence relevant to the user's claim. Then, we leverage textual entailment recognition to quantitatively determine whether this assertion is credible, based on the created evidence. Our approach tries to fill the gap in automated claim validation for less-resourced languages and is showcased on the Greek language, complemented by the training of relevant semantic textual similarity (STS) and natural language inference (NLI) models that are evaluated on translated versions of common benchmarks.
AVerImaTeC: A Dataset for Automatic Verification of Image-Text Claims with Evidence from the Web
Textual claims are often accompanied by images to enhance their credibility and spread on social media, but this also raises concerns about the spread of misinformation. Existing datasets for automated verification of image-text claims remain limited, as they often consist of synthetic claims and lack evidence annotations to capture the reasoning behind the verdict. In this work, we introduce AVerImaTeC, a dataset consisting of 1,297 real-world image-text claims. Each claim is annotated with question-answer (QA) pairs containing evidence from the web, reflecting a decomposed reasoning regarding the verdict. We mitigate common challenges in fact-checking datasets such as contextual dependence, temporal leakage, and evidence insufficiency, via claim normalization, temporally constrained evidence annotation, and a two-stage sufficiency check. We assess the consistency of the annotation in AVerImaTeC via inter-annotator studies, achieving a kappa=0.742 on verdicts and 74.7% consistency on QA pairs. We also propose a novel evaluation method for evidence retrieval and conduct extensive experiments to establish baselines for verifying image-text claims using open-web evidence.
Unsupervised Pretraining for Fact Verification by Language Model Distillation
Fact verification aims to verify a claim using evidence from a trustworthy knowledge base. To address this challenge, algorithms must produce features for every claim that are both semantically meaningful, and compact enough to find a semantic alignment with the source information. In contrast to previous work, which tackled the alignment problem by learning over annotated corpora of claims and their corresponding labels, we propose SFAVEL (Self-supervised Fact Verification via Language Model Distillation), a novel unsupervised pretraining framework that leverages pre-trained language models to distil self-supervised features into high-quality claim-fact alignments without the need for annotations. This is enabled by a novel contrastive loss function that encourages features to attain high-quality claim and evidence alignments whilst preserving the semantic relationships across the corpora. Notably, we present results that achieve a new state-of-the-art on FB15k-237 (+5.3% Hits@1) and FEVER (+8% accuracy) with linear evaluation.
SUCEA: Reasoning-Intensive Retrieval for Adversarial Fact-checking through Claim Decomposition and Editing
Automatic fact-checking has recently received more attention as a means of combating misinformation. Despite significant advancements, fact-checking systems based on retrieval-augmented language models still struggle to tackle adversarial claims, which are intentionally designed by humans to challenge fact-checking systems. To address these challenges, we propose a training-free method designed to rephrase the original claim, making it easier to locate supporting evidence. Our modular framework, SUCEA, decomposes the task into three steps: 1) Claim Segmentation and Decontextualization that segments adversarial claims into independent sub-claims; 2) Iterative Evidence Retrieval and Claim Editing that iteratively retrieves evidence and edits the subclaim based on the retrieved evidence; 3) Evidence Aggregation and Label Prediction that aggregates all retrieved evidence and predicts the entailment label. Experiments on two challenging fact-checking datasets demonstrate that our framework significantly improves on both retrieval and entailment label accuracy, outperforming four strong claim-decomposition-based baselines.
FactIR: A Real-World Zero-shot Open-Domain Retrieval Benchmark for Fact-Checking
The field of automated fact-checking increasingly depends on retrieving web-based evidence to determine the veracity of claims in real-world scenarios. A significant challenge in this process is not only retrieving relevant information, but also identifying evidence that can both support and refute complex claims. Traditional retrieval methods may return documents that directly address claims or lean toward supporting them, but often struggle with more complex claims requiring indirect reasoning. While some existing benchmarks and methods target retrieval for fact-checking, a comprehensive real-world open-domain benchmark has been lacking. In this paper, we present a real-world retrieval benchmark FactIR, derived from Factiverse production logs, enhanced with human annotations. We rigorously evaluate state-of-the-art retrieval models in a zero-shot setup on FactIR and offer insights for developing practical retrieval systems for fact-checking. Code and data are available at https://github.com/factiverse/factIR.
MultiVerS: Improving scientific claim verification with weak supervision and full-document context
The scientific claim verification task requires an NLP system to label scientific documents which Support or Refute an input claim, and to select evidentiary sentences (or rationales) justifying each predicted label. In this work, we present MultiVerS, which predicts a fact-checking label and identifies rationales in a multitask fashion based on a shared encoding of the claim and full document context. This approach accomplishes two key modeling goals. First, it ensures that all relevant contextual information is incorporated into each labeling decision. Second, it enables the model to learn from instances annotated with a document-level fact-checking label, but lacking sentence-level rationales. This allows MultiVerS to perform weakly-supervised domain adaptation by training on scientific documents labeled using high-precision heuristics. Our approach outperforms two competitive baselines on three scientific claim verification datasets, with particularly strong performance in zero / few-shot domain adaptation experiments. Our code and data are available at https://github.com/dwadden/multivers.
HealthFC: A Dataset of Health Claims for Evidence-Based Medical Fact-Checking
Seeking health-related advice on the internet has become a common practice in the digital era. Determining the trustworthiness of medical claims found online and finding appropriate evidence for this information is increasingly challenging. Fact-checking has emerged as an approach to assess the veracity of factual claims using evidence from credible knowledge sources. To help advance the automation of this task, in this paper, we introduce a novel dataset of 750 health-related claims, labeled for veracity by medical experts and backed with evidence from appropriate clinical studies. We provide an analysis of the dataset, highlighting its characteristics and challenges. The dataset can be used for Machine Learning tasks related to automated fact-checking such as evidence retrieval, veracity prediction, and explanation generation. For this purpose, we provide baseline models based on different approaches, examine their performance, and discuss the findings.
FIRE: Fact-checking with Iterative Retrieval and Verification
Fact-checking long-form text is challenging, and it is therefore common practice to break it down into multiple atomic claims. The typical approach to fact-checking these atomic claims involves retrieving a fixed number of pieces of evidence, followed by a verification step. However, this method is usually not cost-effective, as it underutilizes the verification model's internal knowledge of the claim and fails to replicate the iterative reasoning process in human search strategies. To address these limitations, we propose FIRE, a novel agent-based framework that integrates evidence retrieval and claim verification in an iterative manner. Specifically, FIRE employs a unified mechanism to decide whether to provide a final answer or generate a subsequent search query, based on its confidence in the current judgment. We compare FIRE with other strong fact-checking frameworks and find that it achieves slightly better performance while reducing large language model (LLM) costs by an average of 7.6 times and search costs by 16.5 times. These results indicate that FIRE holds promise for application in large-scale fact-checking operations. Our code is available at https://github.com/mbzuai-nlp/fire.git.
LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification
Given a natural language statement, how to verify its veracity against a large-scale textual knowledge source like Wikipedia? Most existing neural models make predictions without giving clues about which part of a false claim goes wrong. In this paper, we propose LOREN, an approach for interpretable fact verification. We decompose the verification of the whole claim at phrase-level, where the veracity of the phrases serves as explanations and can be aggregated into the final verdict according to logical rules. The key insight of LOREN is to represent claim phrase veracity as three-valued latent variables, which are regularized by aggregation logical rules. The final claim verification is based on all latent variables. Thus, LOREN enjoys the additional benefit of interpretability -- it is easy to explain how it reaches certain results with claim phrase veracity. Experiments on a public fact verification benchmark show that LOREN is competitive against previous approaches while enjoying the merit of faithful and accurate interpretability. The resources of LOREN are available at: https://github.com/jiangjiechen/LOREN.
Get Your Vitamin C! Robust Fact Verification with Contrastive Evidence
Typical fact verification models use retrieved written evidence to verify claims. Evidence sources, however, often change over time as more information is gathered and revised. In order to adapt, models must be sensitive to subtle differences in supporting evidence. We present VitaminC, a benchmark infused with challenging cases that require fact verification models to discern and adjust to slight factual changes. We collect over 100,000 Wikipedia revisions that modify an underlying fact, and leverage these revisions, together with additional synthetically constructed ones, to create a total of over 400,000 claim-evidence pairs. Unlike previous resources, the examples in VitaminC are contrastive, i.e., they contain evidence pairs that are nearly identical in language and content, with the exception that one supports a given claim while the other does not. We show that training using this design increases robustness -- improving accuracy by 10% on adversarial fact verification and 6% on adversarial natural language inference (NLI). Moreover, the structure of VitaminC leads us to define additional tasks for fact-checking resources: tagging relevant words in the evidence for verifying the claim, identifying factual revisions, and providing automatic edits via factually consistent text generation.
To Revise or Not to Revise: Learning to Detect Improvable Claims for Argumentative Writing Support
Optimizing the phrasing of argumentative text is crucial in higher education and professional development. However, assessing whether and how the different claims in a text should be revised is a hard task, especially for novice writers. In this work, we explore the main challenges to identifying argumentative claims in need of specific revisions. By learning from collaborative editing behaviors in online debates, we seek to capture implicit revision patterns in order to develop approaches aimed at guiding writers in how to further improve their arguments. We systematically compare the ability of common word embedding models to capture the differences between different versions of the same text, and we analyze their impact on various types of writing issues. To deal with the noisy nature of revision-based corpora, we propose a new sampling strategy based on revision distance. Opposed to approaches from prior work, such sampling can be done without employing additional annotations and judgments. Moreover, we provide evidence that using contextual information and domain knowledge can further improve prediction results. How useful a certain type of context is, depends on the issue the claim is suffering from, though.
Explore, Establish, Exploit: Red Teaming Language Models from Scratch
Deploying Large language models (LLMs) can pose hazards from harmful outputs such as toxic or dishonest speech. Prior work has introduced tools that elicit harmful outputs in order to identify and mitigate these risks. While this is a valuable step toward securing language models, these approaches typically rely on a pre-existing classifier for undesired outputs. This limits their application to situations where the type of harmful behavior is known with precision beforehand. However, this skips a central challenge of red teaming: developing a contextual understanding of the behaviors that a model can exhibit. Furthermore, when such a classifier already exists, red teaming has limited marginal value because the classifier could simply be used to filter training data or model outputs. In this work, we consider red teaming under the assumption that the adversary is working from a high-level, abstract specification of undesired behavior. The red team is expected to refine/extend this specification and identify methods to elicit this behavior from the model. Our red teaming framework consists of three steps: 1) Exploring the model's behavior in the desired context; 2) Establishing a measurement of undesired behavior (e.g., a classifier trained to reflect human evaluations); and 3) Exploiting the model's flaws using this measure and an established red teaming methodology. We apply this approach to red team GPT-2 and GPT-3 models to systematically discover classes of prompts that elicit toxic and dishonest statements. In doing so, we also construct and release the CommonClaim dataset of 20,000 statements that have been labeled by human subjects as common-knowledge-true, common-knowledge-false, or neither. Code is available at https://github.com/thestephencasper/explore_establish_exploit_llms. CommonClaim is available at https://github.com/thestephencasper/common_claim.
FEVER: a large-scale dataset for Fact Extraction and VERification
In this paper we introduce a new publicly available dataset for verification against textual sources, FEVER: Fact Extraction and VERification. It consists of 185,445 claims generated by altering sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence they were derived from. The claims are classified as Supported, Refuted or NotEnoughInfo by annotators achieving 0.6841 in Fleiss kappa. For the first two classes, the annotators also recorded the sentence(s) forming the necessary evidence for their judgment. To characterize the challenge of the dataset presented, we develop a pipeline approach and compare it to suitably designed oracles. The best accuracy we achieve on labeling a claim accompanied by the correct evidence is 31.87%, while if we ignore the evidence we achieve 50.91%. Thus we believe that FEVER is a challenging testbed that will help stimulate progress on claim verification against textual sources.
MuSciClaims: Multimodal Scientific Claim Verification
Assessing scientific claims requires identifying, extracting, and reasoning with multimodal data expressed in information-rich figures in scientific literature. Despite the large body of work in scientific QA, figure captioning, and other multimodal reasoning tasks over chart-based data, there are no readily usable multimodal benchmarks that directly test claim verification abilities. To remedy this gap, we introduce a new benchmark MuSciClaims accompanied by diagnostics tasks. We automatically extract supported claims from scientific articles, which we manually perturb to produce contradicted claims. The perturbations are designed to test for a specific set of claim verification capabilities. We also introduce a suite of diagnostic tasks that help understand model failures. Our results show most vision-language models are poor (~0.3-0.5 F1), with even the best model only achieving 0.72 F1. They are also biased towards judging claims as supported, likely misunderstanding nuanced perturbations within the claims. Our diagnostics show models are bad at localizing correct evidence within figures, struggle with aggregating information across modalities, and often fail to understand basic components of the figure.
A Graph-based Verification Framework for Fact-Checking
Fact-checking plays a crucial role in combating misinformation. Existing methods using large language models (LLMs) for claim decomposition face two key limitations: (1) insufficient decomposition, introducing unnecessary complexity to the verification process, and (2) ambiguity of mentions, leading to incorrect verification results. To address these challenges, we suggest introducing a claim graph consisting of triplets to address the insufficient decomposition problem and reduce mention ambiguity through graph structure. Based on this core idea, we propose a graph-based framework, GraphFC, for fact-checking. The framework features three key components: graph construction, which builds both claim and evidence graphs; graph-guided planning, which prioritizes the triplet verification order; and graph-guided checking, which verifies the triples one by one between claim and evidence graphs. Extensive experiments show that GraphFC enables fine-grained decomposition while resolving referential ambiguities through relational constraints, achieving state-of-the-art performance across three datasets.
PatentBERT: Patent Classification with Fine-Tuning a pre-trained BERT Model
In this work we focus on fine-tuning a pre-trained BERT model and applying it to patent classification. When applied to large datasets of over two millions patents, our approach outperforms the state of the art by an approach using CNN with word embeddings. In addition, we focus on patent claims without other parts in patent documents. Our contributions include: (1) a new state-of-the-art method based on pre-trained BERT model and fine-tuning for patent classification, (2) a large dataset USPTO-3M at the CPC subclass level with SQL statements that can be used by future researchers, (3) showing that patent claims alone are sufficient for classification task, in contrast to conventional wisdom.
Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools
Legal practice has witnessed a sharp rise in products incorporating artificial intelligence (AI). Such tools are designed to assist with a wide range of core legal tasks, from search and summarization of caselaw to document drafting. But the large language models used in these tools are prone to "hallucinate," or make up false information, making their use risky in high-stakes domains. Recently, certain legal research providers have touted methods such as retrieval-augmented generation (RAG) as "eliminating" (Casetext, 2023) or "avoid[ing]" hallucinations (Thomson Reuters, 2023), or guaranteeing "hallucination-free" legal citations (LexisNexis, 2023). Because of the closed nature of these systems, systematically assessing these claims is challenging. In this article, we design and report on the first preregistered empirical evaluation of AI-driven legal research tools. We demonstrate that the providers' claims are overstated. While hallucinations are reduced relative to general-purpose chatbots (GPT-4), we find that the AI research tools made by LexisNexis (Lexis+ AI) and Thomson Reuters (Westlaw AI-Assisted Research and Ask Practical Law AI) each hallucinate between 17% and 33% of the time. We also document substantial differences between systems in responsiveness and accuracy. Our article makes four key contributions. It is the first to assess and report the performance of RAG-based proprietary legal AI tools. Second, it introduces a comprehensive, preregistered dataset for identifying and understanding vulnerabilities in these systems. Third, it proposes a clear typology for differentiating between hallucinations and accurate legal responses. Last, it provides evidence to inform the responsibilities of legal professionals in supervising and verifying AI outputs, which remains a central open question for the responsible integration of AI into law.
CiteME: Can Language Models Accurately Cite Scientific Claims?
Thousands of new scientific papers are published each month. Such information overload complicates researcher efforts to stay current with the state-of-the-art as well as to verify and correctly attribute claims. We pose the following research question: Given a text excerpt referencing a paper, could an LM act as a research assistant to correctly identify the referenced paper? We advance efforts to answer this question by building a benchmark that evaluates the abilities of LMs in citation attribution. Our benchmark, CiteME, consists of text excerpts from recent machine learning papers, each referencing a single other paper. CiteME use reveals a large gap between frontier LMs and human performance, with LMs achieving only 4.2-18.5% accuracy and humans 69.7%. We close this gap by introducing CiteAgent, an autonomous system built on the GPT-4o LM that can also search and read papers, which achieves an accuracy of 35.3\% on CiteME. Overall, CiteME serves as a challenging testbed for open-ended claim attribution, driving the research community towards a future where any claim made by an LM can be automatically verified and discarded if found to be incorrect.
Stance Prediction and Claim Verification: An Arabic Perspective
This work explores the application of textual entailment in news claim verification and stance prediction using a new corpus in Arabic. The publicly available corpus comes in two perspectives: a version consisting of 4,547 true and false claims and a version consisting of 3,786 pairs (claim, evidence). We describe the methodology for creating the corpus and the annotation process. Using the introduced corpus, we also develop two machine learning baselines for two proposed tasks: claim verification and stance prediction. Our best model utilizes pretraining (BERT) and achieves 76.7 F1 on the stance prediction task and 64.3 F1 on the claim verification task. Our preliminary experiments shed some light on the limits of automatic claim verification that relies on claims text only. Results hint that while the linguistic features and world knowledge learned during pretraining are useful for stance prediction, such learned representations from pretraining are insufficient for verifying claims without access to context or evidence.
LM vs LM: Detecting Factual Errors via Cross Examination
A prominent weakness of modern language models (LMs) is their tendency to generate factually incorrect text, which hinders their usability. A natural question is whether such factual errors can be detected automatically. Inspired by truth-seeking mechanisms in law, we propose a factuality evaluation framework for LMs that is based on cross-examination. Our key idea is that an incorrect claim is likely to result in inconsistency with other claims that the model generates. To discover such inconsistencies, we facilitate a multi-turn interaction between the LM that generated the claim and another LM (acting as an examiner) which introduces questions to discover inconsistencies. We empirically evaluate our method on factual claims made by multiple recent LMs on four benchmarks, finding that it outperforms existing methods and baselines, often by a large gap. Our results demonstrate the potential of using interacting LMs for capturing factual errors.
AVeriTeC: A Dataset for Real-world Claim Verification with Evidence from the Web
Existing datasets for automated fact-checking have substantial limitations, such as relying on artificial claims, lacking annotations for evidence and intermediate reasoning, or including evidence published after the claim. In this paper we introduce AVeriTeC, a new dataset of 4,568 real-world claims covering fact-checks by 50 different organizations. Each claim is annotated with question-answer pairs supported by evidence available online, as well as textual justifications explaining how the evidence combines to produce a verdict. Through a multi-round annotation process, we avoid common pitfalls including context dependence, evidence insufficiency, and temporal leakage, and reach a substantial inter-annotator agreement of kappa=0.619 on verdicts. We develop a baseline as well as an evaluation scheme for verifying claims through several question-answering steps against the open web.
The Missing Parts: Augmenting Fact Verification with Half-Truth Detection
Fact verification systems typically assess whether a claim is supported by retrieved evidence, assuming that truthfulness depends solely on what is stated. However, many real-world claims are half-truths, factually correct yet misleading due to the omission of critical context. Existing models struggle with such cases, as they are not designed to reason about what is left unsaid. We introduce the task of half-truth detection, and propose PolitiFact-Hidden, a new benchmark with 15k political claims annotated with sentence-level evidence alignment and inferred claim intent. To address this challenge, we present TRACER, a modular re-assessment framework that identifies omission-based misinformation by aligning evidence, inferring implied intent, and estimating the causal impact of hidden content. TRACER can be integrated into existing fact-checking pipelines and consistently improves performance across multiple strong baselines. Notably, it boosts Half-True classification F1 by up to 16 points, highlighting the importance of modeling omissions for trustworthy fact verification.
Match, Compare, or Select? An Investigation of Large Language Models for Entity Matching
Entity matching (EM) is a critical step in entity resolution (ER). Recently, entity matching based on large language models (LLMs) has shown great promise. However, current LLM-based entity matching approaches typically follow a binary matching paradigm that ignores the global consistency between record relationships. In this paper, we investigate various methodologies for LLM-based entity matching that incorporate record interactions from different perspectives. Specifically, we comprehensively compare three representative strategies: matching, comparing, and selecting, and analyze their respective advantages and challenges in diverse scenarios. Based on our findings, we further design a compound entity matching framework (ComEM) that leverages the composition of multiple strategies and LLMs. ComEM benefits from the advantages of different sides and achieves improvements in both effectiveness and efficiency. Experimental results on 8 ER datasets and 9 LLMs verify the superiority of incorporating record interactions through the selecting strategy, as well as the further cost-effectiveness brought by ComEM.
Can Large Language Models Generate High-quality Patent Claims?
Large language models (LLMs) have shown exceptional performance across various text generation tasks but remain under-explored in the patent domain, which offers highly structured and precise language. This paper constructs a dataset to investigate the performance of current LLMs in patent claim generation. Our results demonstrate that generating claims based on patent descriptions outperforms previous research relying on abstracts. Interestingly, current patent-specific LLMs perform much worse than state-of-the-art general LLMs, highlighting the necessity for future research on in-domain LLMs. We also find that LLMs can produce high-quality first independent claims, but their performances markedly decrease for subsequent dependent claims. Moreover, fine-tuning can enhance the completeness of inventions' features, conceptual clarity, and feature linkage. Among the tested LLMs, GPT-4 demonstrates the best performance in comprehensive human evaluations by patent experts, with better feature coverage, conceptual clarity, and technical coherence. Despite these capabilities, comprehensive revision and modification are still necessary to pass rigorous patent scrutiny and ensure legal robustness.
Explainable Automated Fact-Checking for Public Health Claims
Fact-checking is the task of verifying the veracity of claims by assessing their assertions against credible evidence. The vast majority of fact-checking studies focus exclusively on political claims. Very little research explores fact-checking for other topics, specifically subject matters for which expertise is required. We present the first study of explainable fact-checking for claims which require specific expertise. For our case study we choose the setting of public health. To support this case study we construct a new dataset PUBHEALTH of 11.8K claims accompanied by journalist crafted, gold standard explanations (i.e., judgments) to support the fact-check labels for claims. We explore two tasks: veracity prediction and explanation generation. We also define and evaluate, with humans and computationally, three coherence properties of explanation quality. Our results indicate that, by training on in-domain data, gains can be made in explainable, automated fact-checking for claims which require specific expertise.
FiNCAT: Financial Numeral Claim Analysis Tool
While making investment decisions by reading financial documents, investors need to differentiate between in-claim and outof-claim numerals. In this paper, we present a tool which does it automatically. It extracts context embeddings of the numerals using one of the transformer based pre-trained language model called BERT. After this, it uses a Logistic Regression based model to detect whether the numerals is in-claim or out-of-claim. We use FinNum-3 (English) dataset to train our model. After conducting rigorous experiments we achieve a Macro F1 score of 0.8223 on the validation set. We have open-sourced this tool and it can be accessed from https://github.com/sohomghosh/FiNCAT_Financial_Numeral_Claim_Analysis_Tool
Evidence-backed Fact Checking using RAG and Few-Shot In-Context Learning with LLMs
Given the widespread dissemination of misinformation on social media, implementing fact-checking mechanisms for online claims is essential. Manually verifying every claim is highly challenging, underscoring the need for an automated fact-checking system. This paper presents our system designed to address this issue. We utilize the Averitec dataset to assess the veracity of claims. In addition to veracity prediction, our system provides supporting evidence, which is extracted from the dataset. We develop a Retrieve and Generate (RAG) pipeline to extract relevant evidence sentences from a knowledge base, which are then inputted along with the claim into a large language model (LLM) for classification. We also evaluate the few-shot In-Context Learning (ICL) capabilities of multiple LLMs. Our system achieves an 'Averitec' score of 0.33, which is a 22% absolute improvement over the baseline. All code will be made available on All code will be made available on https://github.com/ronit-singhal/evidence-backed-fact-checking-using-rag-and-few-shot-in-context-learning-with-llms.
Unveiling LLMs: The Evolution of Latent Representations in a Dynamic Knowledge Graph
Large Language Models (LLMs) demonstrate an impressive capacity to recall a vast range of factual knowledge. However, understanding their underlying reasoning and internal mechanisms in exploiting this knowledge remains a key research area. This work unveils the factual information an LLM represents internally for sentence-level claim verification. We propose an end-to-end framework to decode factual knowledge embedded in token representations from a vector space to a set of ground predicates, showing its layer-wise evolution using a dynamic knowledge graph. Our framework employs activation patching, a vector-level technique that alters a token representation during inference, to extract encoded knowledge. Accordingly, we neither rely on training nor external models. Using factual and common-sense claims from two claim verification datasets, we showcase interpretability analyses at local and global levels. The local analysis highlights entity centrality in LLM reasoning, from claim-related information and multi-hop reasoning to representation errors causing erroneous evaluation. On the other hand, the global reveals trends in the underlying evolution, such as word-based knowledge evolving into claim-related facts. By interpreting semantics from LLM latent representations and enabling graph-related analyses, this work enhances the understanding of the factual knowledge resolution process.
Matching Table Metadata with Business Glossaries Using Large Language Models
Enterprises often own large collections of structured data in the form of large databases or an enterprise data lake. Such data collections come with limited metadata and strict access policies that could limit access to the data contents and, therefore, limit the application of classic retrieval and analysis solutions. As a result, there is a need for solutions that can effectively utilize the available metadata. In this paper, we study the problem of matching table metadata to a business glossary containing data labels and descriptions. The resulting matching enables the use of an available or curated business glossary for retrieval and analysis without or before requesting access to the data contents. One solution to this problem is to use manually-defined rules or similarity measures on column names and glossary descriptions (or their vector embeddings) to find the closest match. However, such approaches need to be tuned through manual labeling and cannot handle many business glossaries that contain a combination of simple as well as complex and long descriptions. In this work, we leverage the power of large language models (LLMs) to design generic matching methods that do not require manual tuning and can identify complex relations between column names and glossaries. We propose methods that utilize LLMs in two ways: a) by generating additional context for column names that can aid with matching b) by using LLMs to directly infer if there is a relation between column names and glossary descriptions. Our preliminary experimental results show the effectiveness of our proposed methods.
PatentSBERTa: A Deep NLP based Hybrid Model for Patent Distance and Classification using Augmented SBERT
This study provides an efficient approach for using text data to calculate patent-to-patent (p2p) technological similarity, and presents a hybrid framework for leveraging the resulting p2p similarity for applications such as semantic search and automated patent classification. We create embeddings using Sentence-BERT (SBERT) based on patent claims. We leverage SBERTs efficiency in creating embedding distance measures to map p2p similarity in large sets of patent data. We deploy our framework for classification with a simple Nearest Neighbors (KNN) model that predicts Cooperative Patent Classification (CPC) of a patent based on the class assignment of the K patents with the highest p2p similarity. We thereby validate that the p2p similarity captures their technological features in terms of CPC overlap, and at the same demonstrate the usefulness of this approach for automatic patent classification based on text data. Furthermore, the presented classification framework is simple and the results easy to interpret and evaluate by end-users. In the out-of-sample model validation, we are able to perform a multi-label prediction of all assigned CPC classes on the subclass (663) level on 1,492,294 patents with an accuracy of 54% and F1 score > 66%, which suggests that our model outperforms the current state-of-the-art in text-based multi-label and multi-class patent classification. We furthermore discuss the applicability of the presented framework for semantic IP search, patent landscaping, and technology intelligence. We finally point towards a future research agenda for leveraging multi-source patent embeddings, their appropriateness across applications, as well as to improve and validate patent embeddings by creating domain-expert curated Semantic Textual Similarity (STS) benchmark datasets.
FEVEROUS: Fact Extraction and VERification Over Unstructured and Structured information
Fact verification has attracted a lot of attention in the machine learning and natural language processing communities, as it is one of the key methods for detecting misinformation. Existing large-scale benchmarks for this task have focused mostly on textual sources, i.e. unstructured information, and thus ignored the wealth of information available in structured formats, such as tables. In this paper we introduce a novel dataset and benchmark, Fact Extraction and VERification Over Unstructured and Structured information (FEVEROUS), which consists of 87,026 verified claims. Each claim is annotated with evidence in the form of sentences and/or cells from tables in Wikipedia, as well as a label indicating whether this evidence supports, refutes, or does not provide enough information to reach a verdict. Furthermore, we detail our efforts to track and minimize the biases present in the dataset and could be exploited by models, e.g. being able to predict the label without using evidence. Finally, we develop a baseline for verifying claims against text and tables which predicts both the correct evidence and verdict for 18% of the claims.
Augmenting Legal Decision Support Systems with LLM-based NLI for Analyzing Social Media Evidence
This paper presents our system description and error analysis of our entry for NLLP 2024 shared task on Legal Natural Language Inference (L-NLI) hagag2024legallenssharedtask2024. The task required classifying these relationships as entailed, contradicted, or neutral, indicating any association between the review and the complaint. Our system emerged as the winning submission, significantly outperforming other entries with a substantial margin and demonstrating the effectiveness of our approach in legal text analysis. We provide a detailed analysis of the strengths and limitations of each model and approach tested, along with a thorough error analysis and suggestions for future improvements. This paper aims to contribute to the growing field of legal NLP by offering insights into advanced techniques for natural language inference in legal contexts, making it accessible to both experts and newcomers in the field.
Cross-Policy Compliance Detection via Question Answering
Policy compliance detection is the task of ensuring that a scenario conforms to a policy (e.g. a claim is valid according to government rules or a post in an online platform conforms to community guidelines). This task has been previously instantiated as a form of textual entailment, which results in poor accuracy due to the complexity of the policies. In this paper we propose to address policy compliance detection via decomposing it into question answering, where questions check whether the conditions stated in the policy apply to the scenario, and an expression tree combines the answers to obtain the label. Despite the initial upfront annotation cost, we demonstrate that this approach results in better accuracy, especially in the cross-policy setup where the policies during testing are unseen in training. In addition, it allows us to use existing question answering models pre-trained on existing large datasets. Finally, it explicitly identifies the information missing from a scenario in case policy compliance cannot be determined. We conduct our experiments using a recent dataset consisting of government policies, which we augment with expert annotations and find that the cost of annotating question answering decomposition is largely offset by improved inter-annotator agreement and speed.
Semantic Representation and Inference for NLP
Semantic representation and inference is essential for Natural Language Processing (NLP). The state of the art for semantic representation and inference is deep learning, and particularly Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and transformer Self-Attention models. This thesis investigates the use of deep learning for novel semantic representation and inference, and makes contributions in the following three areas: creating training data, improving semantic representations and extending inference learning. In terms of creating training data, we contribute the largest publicly available dataset of real-life factual claims for the purpose of automatic claim verification (MultiFC), and we present a novel inference model composed of multi-scale CNNs with different kernel sizes that learn from external sources to infer fact checking labels. In terms of improving semantic representations, we contribute a novel model that captures non-compositional semantic indicators. By definition, the meaning of a non-compositional phrase cannot be inferred from the individual meanings of its composing words (e.g., hot dog). Motivated by this, we operationalize the compositionality of a phrase contextually by enriching the phrase representation with external word embeddings and knowledge graphs. Finally, in terms of inference learning, we propose a series of novel deep learning architectures that improve inference by using syntactic dependencies, by ensembling role guided attention heads, incorporating gating layers, and concatenating multiple heads in novel and effective ways. This thesis consists of seven publications (five published and two under review).
Double-Weighting for Covariate Shift Adaptation
Supervised learning is often affected by a covariate shift in which the marginal distributions of instances (covariates x) of training and testing samples p_tr(x) and p_te(x) are different but the label conditionals coincide. Existing approaches address such covariate shift by either using the ratio p_te(x)/p_tr(x) to weight training samples (reweighted methods) or using the ratio p_tr(x)/p_te(x) to weight testing samples (robust methods). However, the performance of such approaches can be poor under support mismatch or when the above ratios take large values. We propose a minimax risk classification (MRC) approach for covariate shift adaptation that avoids such limitations by weighting both training and testing samples. In addition, we develop effective techniques that obtain both sets of weights and generalize the conventional kernel mean matching method. We provide novel generalization bounds for our method that show a significant increase in the effective sample size compared with reweighted methods. The proposed method also achieves enhanced classification performance in both synthetic and empirical experiments.
PatentEdits: Framing Patent Novelty as Textual Entailment
A patent must be deemed novel and non-obvious in order to be granted by the US Patent Office (USPTO). If it is not, a US patent examiner will cite the prior work, or prior art, that invalidates the novelty and issue a non-final rejection. Predicting what claims of the invention should change given the prior art is an essential and crucial step in securing invention rights, yet has not been studied before as a learnable task. In this work we introduce the PatentEdits dataset, which contains 105K examples of successful revisions that overcome objections to novelty. We design algorithms to label edits sentence by sentence, then establish how well these edits can be predicted with large language models (LLMs). We demonstrate that evaluating textual entailment between cited references and draft sentences is especially effective in predicting which inventive claims remained unchanged or are novel in relation to prior art.
PREMISE: Matching-based Prediction for Accurate Review Recommendation
We present PREMISE (PREdict with Matching ScorEs), a new architecture for the matching-based learning in the multimodal fields for the multimodal review helpfulness (MRHP) task. Distinct to previous fusion-based methods which obtains multimodal representations via cross-modal attention for downstream tasks, PREMISE computes the multi-scale and multi-field representations, filters duplicated semantics, and then obtained a set of matching scores as feature vectors for the downstream recommendation task. This new architecture significantly boosts the performance for such multimodal tasks whose context matching content are highly correlated to the targets of that task, compared to the state-of-the-art fusion-based methods. Experimental results on two publicly available datasets show that PREMISE achieves promising performance with less computational cost.
HelpSteer2-Preference: Complementing Ratings with Preferences
Reward models are critical for aligning models to follow instructions, and are typically trained following one of two popular paradigms: Bradley-Terry style or Regression style. However, there is a lack of evidence that either approach is better than the other, when adequately matched for data. This is primarily because these approaches require data collected in different (but incompatible) formats, meaning that adequately matched data is not available in existing public datasets. To tackle this problem, we release preference annotations (designed for Bradley-Terry training) to complement existing ratings (designed for Regression style training) in the HelpSteer2 dataset. To improve data interpretability, preference annotations are accompanied with human-written justifications. Using this data, we conduct the first head-to-head comparison of Bradley-Terry and Regression models when adequately matched for data. Based on insights derived from such a comparison, we propose a novel approach to combine Bradley-Terry and Regression reward modeling. A Llama-3.1-70B-Instruct model tuned with this approach scores 94.1 on RewardBench, emerging top of more than 140 reward models as of 1 Oct 2024. We also demonstrate the effectiveness of this reward model at aligning models to follow instructions in RLHF. We open-source this dataset (CC-BY-4.0 license) at https://huggingface.co/datasets/nvidia/HelpSteer2 and openly release the trained Reward Model at https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward
Numerical Claim Detection in Finance: A New Financial Dataset, Weak-Supervision Model, and Market Analysis
In this paper, we investigate the influence of claims in analyst reports and earnings calls on financial market returns, considering them as significant quarterly events for publicly traded companies. To facilitate a comprehensive analysis, we construct a new financial dataset for the claim detection task in the financial domain. We benchmark various language models on this dataset and propose a novel weak-supervision model that incorporates the knowledge of subject matter experts (SMEs) in the aggregation function, outperforming existing approaches. We also demonstrate the practical utility of our proposed model by constructing a novel measure of optimism. Here, we observe the dependence of earnings surprise and return on our optimism measure. Our dataset, models, and code are publicly (under CC BY 4.0 license) available on GitHub.
CoverBench: A Challenging Benchmark for Complex Claim Verification
There is a growing line of research on verifying the correctness of language models' outputs. At the same time, LMs are being used to tackle complex queries that require reasoning. We introduce CoverBench, a challenging benchmark focused on verifying LM outputs in complex reasoning settings. Datasets that can be used for this purpose are often designed for other complex reasoning tasks (e.g., QA) targeting specific use-cases (e.g., financial tables), requiring transformations, negative sampling and selection of hard examples to collect such a benchmark. CoverBench provides a diversified evaluation for complex claim verification in a variety of domains, types of reasoning, relatively long inputs, and a variety of standardizations, such as multiple representations for tables where available, and a consistent schema. We manually vet the data for quality to ensure low levels of label noise. Finally, we report a variety of competitive baseline results to show CoverBench is challenging and has very significant headroom. The data is available at https://huggingface.co/datasets/google/coverbench .
Matching Patients to Clinical Trials with Large Language Models
Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1,015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT.
Domain-Specific Risk Minimization for Out-of-Distribution Generalization
Recent domain generalization (DG) approaches typically use the hypothesis learned on source domains for inference on the unseen target domain. However, such a hypothesis can be arbitrarily far from the optimal one for the target domain, induced by a gap termed ``adaptivity gap''. Without exploiting the domain information from the unseen test samples, adaptivity gap estimation and minimization are intractable, which hinders us to robustify a model to any unknown distribution. In this paper, we first establish a generalization bound that explicitly considers the adaptivity gap. Our bound motivates two strategies to reduce the gap: the first one is ensembling multiple classifiers to enrich the hypothesis space, then we propose effective gap estimation methods for guiding the selection of a better hypothesis for the target. The other method is minimizing the gap directly by adapting model parameters using online target samples. We thus propose Domain-specific Risk Minimization (DRM). During training, DRM models the distributions of different source domains separately; for inference, DRM performs online model steering using the source hypothesis for each arriving target sample. Extensive experiments demonstrate the effectiveness of the proposed DRM for domain generalization with the following advantages: 1) it significantly outperforms competitive baselines on different distributional shift settings; 2) it achieves either comparable or superior accuracies on all source domains compared to vanilla empirical risk minimization; 3) it remains simple and efficient during training, and 4) it is complementary to invariant learning approaches.
Counterfactual Fairness in Mortgage Lending via Matching and Randomization
Unfairness in mortgage lending has created generational inequality among racial and ethnic groups in the US. Many studies address this problem, but most existing work focuses on correlation-based techniques. In our work, we use the framework of counterfactual fairness to train fair machine learning models. We propose a new causal graph for the variables available in the Home Mortgage Disclosure Act (HMDA) data. We use a matching-based approach instead of the latent variable modeling approach, because the former approach does not rely on any modeling assumptions. Furthermore, matching provides us with counterfactual pairs in which the race variable is isolated. We first demonstrate the unfairness in mortgage approval and interest rates between African-American and non-Hispanic White sub-populations. Then, we show that having balanced data using matching does not guarantee perfect counterfactual fairness of the machine learning models.
MatchMiner-AI: An Open-Source Solution for Cancer Clinical Trial Matching
Clinical trials drive improvements in cancer treatments and outcomes. However, most adults with cancer do not participate in trials, and trials often fail to enroll enough patients to answer their scientific questions. Artificial intelligence could accelerate matching of patients to appropriate clinical trials. Here, we describe the development and evaluation of the MatchMiner-AI pipeline for clinical trial searching and ranking. MatchMiner-AI focuses on matching patients to potential trials based on core criteria describing clinical "spaces," or disease contexts, targeted by a trial. It aims to accelerate the human work of identifying potential matches, not to fully automate trial screening. The pipeline includes modules for extraction of key information from a patient's longitudinal electronic health record; rapid ranking of candidate trial-patient matches based on embeddings in vector space; and classification of whether a candidate match represents a reasonable clinical consideration. Code and synthetic data are available at https://huggingface.co/ksg-dfci/MatchMiner-AI . Model weights based on synthetic data are available at https://huggingface.co/ksg-dfci/TrialSpace and https://huggingface.co/ksg-dfci/TrialChecker . A simple cancer clinical trial search engine to demonstrate pipeline components is available at https://huggingface.co/spaces/ksg-dfci/trial_search_alpha .
CLAUDETTE: an Automated Detector of Potentially Unfair Clauses in Online Terms of Service
Terms of service of on-line platforms too often contain clauses that are potentially unfair to the consumer. We present an experimental study where machine learning is employed to automatically detect such potentially unfair clauses. Results show that the proposed system could provide a valuable tool for lawyers and consumers alike.
Pipeline and Dataset Generation for Automated Fact-checking in Almost Any Language
This article presents a pipeline for automated fact-checking leveraging publicly available Language Models and data. The objective is to assess the accuracy of textual claims using evidence from a ground-truth evidence corpus. The pipeline consists of two main modules -- the evidence retrieval and the claim veracity evaluation. Our primary focus is on the ease of deployment in various languages that remain unexplored in the field of automated fact-checking. Unlike most similar pipelines, which work with evidence sentences, our pipeline processes data on a paragraph level, simplifying the overall architecture and data requirements. Given the high cost of annotating language-specific fact-checking training data, our solution builds on the Question Answering for Claim Generation (QACG) method, which we adapt and use to generate the data for all models of the pipeline. Our strategy enables the introduction of new languages through machine translation of only two fixed datasets of moderate size. Subsequently, any number of training samples can be generated based on an evidence corpus in the target language. We provide open access to all data and fine-tuned models for Czech, English, Polish, and Slovak pipelines, as well as to our codebase that may be used to reproduce the results.We comprehensively evaluate the pipelines for all four languages, including human annotations and per-sample difficulty assessment using Pointwise V-information. The presented experiments are based on full Wikipedia snapshots to promote reproducibility. To facilitate implementation and user interaction, we develop the FactSearch application featuring the proposed pipeline and the preliminary feedback on its performance.
SemanticCite: Citation Verification with AI-Powered Full-Text Analysis and Evidence-Based Reasoning
Effective scientific communication depends on accurate citations that validate sources and guide readers to supporting evidence. Yet academic literature faces mounting challenges: semantic citation errors that misrepresent sources, AI-generated hallucinated references, and traditional citation formats that point to entire papers without indicating which sections substantiate specific claims. We introduce SemanticCite, an AI-powered system that verifies citation accuracy through full-text source analysis while providing rich contextual information via detailed reasoning and relevant text snippets. Our approach combines multiple retrieval methods with a four-class classification system (Supported, Partially Supported, Unsupported, Uncertain) that captures nuanced claim-source relationships and enables appropriate remedial actions for different error types. Our experiments show that fine-tuned lightweight language models achieve performance comparable to large commercial systems with significantly lower computational requirements, making large-scale citation verification practically feasible. The system provides transparent, evidence-based explanations that support user understanding and trust. We contribute a comprehensive dataset of over 1,000 citations with detailed alignments, functional classifications, semantic annotations, and bibliometric metadata across eight disciplines, alongside fine-tuned models and the complete verification framework as open-source software. SemanticCite addresses critical challenges in research integrity through scalable citation verification, streamlined peer review, and quality control for AI-generated content, providing an open-source foundation for maintaining citation accuracy at scale.
Improved Policy Evaluation for Randomized Trials of Algorithmic Resource Allocation
We consider the task of evaluating policies of algorithmic resource allocation through randomized controlled trials (RCTs). Such policies are tasked with optimizing the utilization of limited intervention resources, with the goal of maximizing the benefits derived. Evaluation of such allocation policies through RCTs proves difficult, notwithstanding the scale of the trial, because the individuals' outcomes are inextricably interlinked through resource constraints controlling the policy decisions. Our key contribution is to present a new estimator leveraging our proposed novel concept, that involves retrospective reshuffling of participants across experimental arms at the end of an RCT. We identify conditions under which such reassignments are permissible and can be leveraged to construct counterfactual trials, whose outcomes can be accurately ascertained, for free. We prove theoretically that such an estimator is more accurate than common estimators based on sample means -- we show that it returns an unbiased estimate and simultaneously reduces variance. We demonstrate the value of our approach through empirical experiments on synthetic, semi-synthetic as well as real case study data and show improved estimation accuracy across the board.
Matchmaker: Self-Improving Large Language Model Programs for Schema Matching
Schema matching -- the task of finding matches between attributes across disparate data sources with different tables and hierarchies -- is critical for creating interoperable machine learning (ML)-ready data. Addressing this fundamental data-centric problem has wide implications, especially in domains like healthcare, finance and e-commerce -- but also has the potential to benefit ML models more generally, by increasing the data available for ML model training. However, schema matching is a challenging ML task due to structural/hierarchical and semantic heterogeneity between different schemas. Previous ML approaches to automate schema matching have either required significant labeled data for model training, which is often unrealistic or suffer from poor zero-shot performance. To this end, we propose Matchmaker - a compositional language model program for schema matching, comprised of candidate generation, refinement and confidence scoring. Matchmaker also self-improves in a zero-shot manner without the need for labeled demonstrations via a novel optimization approach, which constructs synthetic in-context demonstrations to guide the language model's reasoning process. Empirically, we demonstrate on real-world medical schema matching benchmarks that Matchmaker outperforms previous ML-based approaches, highlighting its potential to accelerate data integration and interoperability of ML-ready data.
Online Matching with Stochastic Rewards: Advanced Analyses Using Configuration Linear Programs
Mehta and Panigrahi (2012) proposed Online Matching with Stochastic Rewards, which generalizes the Online Bipartite Matching problem of Karp, Vazirani, and Vazirani (1990) by associating the edges with success probabilities. This new feature captures the pay-per-click model in online advertising. Recently, Huang and Zhang (2020) studied this problem under the online primal dual framework using the Configuration Linear Program (LP), and got the best known competitive ratios of the Stochastic Balance algorithm. Their work suggests that the more expressive Configuration LP is more suitable for this problem than the Matching LP. This paper advances the theory of Configuration LP in two directions. Our technical contribution includes a characterization of the joint matching outcome of an offline vertex and all its neighbors. This characterization may be of independent interest, and is aligned with the spirit of Configuration LP. By contrast, previous analyses of Ranking generally focus on only one neighbor. Second, we designed a Stochastic Configuration LP that captures a stochastic benchmark proposed by Goyal and Udwani (2020), who used a Path-based LP. The Stochastic Configuration LP is smaller and simpler than the Path-based LP. Moreover, using the new LP we improved the competitive ratio of Stochastic Balance from 0.596 to 0.611 when the success probabilities are infinitesimal, and to 0.613 when the success probabilities are further equal.
Evaluating Large Language Models for Health-related Queries with Presuppositions
As corporations rush to integrate large language models (LLMs) to their search offerings, it is critical that they provide factually accurate information that is robust to any presuppositions that a user may express. In this work, we introduce UPHILL, a dataset consisting of health-related queries with varying degrees of presuppositions. Using UPHILL, we evaluate the factual accuracy and consistency of InstructGPT, ChatGPT, and BingChat models. We find that while model responses rarely disagree with true health claims (posed as questions), they often fail to challenge false claims: responses from InstructGPT agree with 32% of the false claims, ChatGPT 26% and BingChat 23%. As we increase the extent of presupposition in input queries, the responses from InstructGPT and ChatGPT agree with the claim considerably more often, regardless of its veracity. Responses from BingChat, which rely on retrieved webpages, are not as susceptible. Given the moderate factual accuracy, and the inability of models to consistently correct false assumptions, our work calls for a careful assessment of current LLMs for use in high-stakes scenarios.
AttributionBench: How Hard is Automatic Attribution Evaluation?
Modern generative search engines enhance the reliability of large language model (LLM) responses by providing cited evidence. However, evaluating the answer's attribution, i.e., whether every claim within the generated responses is fully supported by its cited evidence, remains an open problem. This verification, traditionally dependent on costly human evaluation, underscores the urgent need for automatic attribution evaluation methods. To bridge the gap in the absence of standardized benchmarks for these methods, we present AttributionBench, a comprehensive benchmark compiled from various existing attribution datasets. Our extensive experiments on AttributionBench reveal the challenges of automatic attribution evaluation, even for state-of-the-art LLMs. Specifically, our findings show that even a fine-tuned GPT-3.5 only achieves around 80% macro-F1 under a binary classification formulation. A detailed analysis of more than 300 error cases indicates that a majority of failures stem from the model's inability to process nuanced information, and the discrepancy between the information the model has access to and that human annotators do.
Assisting Mathematical Formalization with A Learning-based Premise Retriever
Premise selection is a crucial yet challenging step in mathematical formalization, especially for users with limited experience. Due to the lack of available formalization projects, existing approaches that leverage language models often suffer from data scarcity. In this work, we introduce an innovative method for training a premise retriever to support the formalization of mathematics. Our approach employs a BERT model to embed proof states and premises into a shared latent space. The retrieval model is trained within a contrastive learning framework and incorporates a domain-specific tokenizer along with a fine-grained similarity computation method. Experimental results show that our model is highly competitive compared to existing baselines, achieving strong performance while requiring fewer computational resources. Performance is further enhanced through the integration of a re-ranking module. To streamline the formalization process, we will release a search engine that enables users to query Mathlib theorems directly using proof states, significantly improving accessibility and efficiency. Codes are available at https://github.com/ruc-ai4math/Premise-Retrieval.
The Minimum Information about CLinical Artificial Intelligence Checklist for Generative Modeling Research (MI-CLAIM-GEN)
Recent advances in generative models, including large language models (LLMs), vision language models (VLMs), and diffusion models, have accelerated the field of natural language and image processing in medicine and marked a significant paradigm shift in how biomedical models can be developed and deployed. While these models are highly adaptable to new tasks, scaling and evaluating their usage presents new challenges not addressed in previous frameworks. In particular, the ability of these models to produce useful outputs with little to no specialized training data ("zero-" or "few-shot" approaches), as well as the open-ended nature of their outputs, necessitate the development of new guidelines for robust reporting of clinical generative model research. In response to gaps in standards and best practices for the development of clinical AI tools identified by US Executive Order 141103 and several emerging national networks for clinical AI evaluation, we begin to formalize some of these guidelines by building on the original MI-CLAIM checklist. The new checklist, MI-CLAIM-GEN (Table 1), aims to address differences in training, evaluation, interpretability, and reproducibility of new generative models compared to non-generative ("predictive") AI models. This MI-CLAIM-GEN checklist also seeks to clarify cohort selection reporting with unstructured clinical data and adds additional items on alignment with ethical standards for clinical AI research.
Learning to Match Jobs with Resumes from Sparse Interaction Data using Multi-View Co-Teaching Network
With the ever-increasing growth of online recruitment data, job-resume matching has become an important task to automatically match jobs with suitable resumes. This task is typically casted as a supervised text matching problem. Supervised learning is powerful when the labeled data is sufficient. However, on online recruitment platforms, job-resume interaction data is sparse and noisy, which affects the performance of job-resume match algorithms. To alleviate these problems, in this paper, we propose a novel multi-view co-teaching network from sparse interaction data for job-resume matching. Our network consists of two major components, namely text-based matching model and relation-based matching model. The two parts capture semantic compatibility in two different views, and complement each other. In order to address the challenges from sparse and noisy data, we design two specific strategies to combine the two components. First, two components share the learned parameters or representations, so that the original representations of each component can be enhanced. More importantly, we adopt a co-teaching mechanism to reduce the influence of noise in training data. The core idea is to let the two components help each other by selecting more reliable training instances. The two strategies focus on representation enhancement and data enhancement, respectively. Compared with pure text-based matching models, the proposed approach is able to learn better data representations from limited or even sparse interaction data, which is more resistible to noise in training data. Experiment results have demonstrated that our model is able to outperform state-of-the-art methods for job-resume matching.
Mining Legal Arguments in Court Decisions
Identifying, classifying, and analyzing arguments in legal discourse has been a prominent area of research since the inception of the argument mining field. However, there has been a major discrepancy between the way natural language processing (NLP) researchers model and annotate arguments in court decisions and the way legal experts understand and analyze legal argumentation. While computational approaches typically simplify arguments into generic premises and claims, arguments in legal research usually exhibit a rich typology that is important for gaining insights into the particular case and applications of law in general. We address this problem and make several substantial contributions to move the field forward. First, we design a new annotation scheme for legal arguments in proceedings of the European Court of Human Rights (ECHR) that is deeply rooted in the theory and practice of legal argumentation research. Second, we compile and annotate a large corpus of 373 court decisions (2.3M tokens and 15k annotated argument spans). Finally, we train an argument mining model that outperforms state-of-the-art models in the legal NLP domain and provide a thorough expert-based evaluation. All datasets and source codes are available under open lincenses at https://github.com/trusthlt/mining-legal-arguments.
Toward a traceable, explainable, and fairJD/Resume recommendation system
In the last few decades, companies are interested to adopt an online automated recruitment process in an international recruitment environment. The problem is that the recruitment of employees through the manual procedure is a time and money consuming process. As a result, processing a significant number of applications through conventional methods can lead to the recruitment of clumsy individuals. Different JD/Resume matching model architectures have been proposed and reveal a high accuracy level in selecting relevant candidatesfor the required job positions. However, the development of an automatic recruitment system is still one of the main challenges. The reason is that the development of a fully automated recruitment system is a difficult task and poses different challenges. For example, providing a detailed matching explanation for the targeted stakeholders is needed to ensure a transparent recommendation. There are several knowledge bases that represent skills and competencies (e.g, ESCO, O*NET) that are used to identify the candidate and the required job skills for a matching purpose. Besides, modernpre-trained language models are fine-tuned for this context such as identifying lines where a specific feature was introduced. Typically, pre-trained language models use transfer-based machine learning models to be fine-tuned for a specific field. In this proposal, our aim is to explore how modern language models (based on transformers) can be combined with knowledge bases and ontologies to enhance the JD/Resume matching process. Our system aims at using knowledge bases and features to support the explainability of the JD/Resume matching. Finally, given that multiple software components, datasets, ontology, andmachine learning models will be explored, we aim at proposing a fair, ex-plainable, and traceable architecture for a Resume/JD matching purpose.
IAM: A Comprehensive and Large-Scale Dataset for Integrated Argument Mining Tasks
Traditionally, a debate usually requires a manual preparation process, including reading plenty of articles, selecting the claims, identifying the stances of the claims, seeking the evidence for the claims, etc. As the AI debate attracts more attention these years, it is worth exploring the methods to automate the tedious process involved in the debating system. In this work, we introduce a comprehensive and large dataset named IAM, which can be applied to a series of argument mining tasks, including claim extraction, stance classification, evidence extraction, etc. Our dataset is collected from over 1k articles related to 123 topics. Near 70k sentences in the dataset are fully annotated based on their argument properties (e.g., claims, stances, evidence, etc.). We further propose two new integrated argument mining tasks associated with the debate preparation process: (1) claim extraction with stance classification (CESC) and (2) claim-evidence pair extraction (CEPE). We adopt a pipeline approach and an end-to-end method for each integrated task separately. Promising experimental results are reported to show the values and challenges of our proposed tasks, and motivate future research on argument mining.
MUCH: A Multilingual Claim Hallucination Benchmark
Claim-level Uncertainty Quantification (UQ) is a promising approach to mitigate the lack of reliability in Large Language Models (LLMs). We introduce MUCH, the first claim-level UQ benchmark designed for fair and reproducible evaluation of future methods under realistic conditions. It includes 4,873 samples across four European languages (English, French, Spanish, and German) and four instruction-tuned open-weight LLMs. Unlike prior claim-level benchmarks, we release 24 generation logits per token, facilitating the development of future white-box methods without re-generating data. Moreover, in contrast to previous benchmarks that rely on manual or LLM-based segmentation, we propose a new deterministic algorithm capable of segmenting claims using as little as 0.2% of the LLM generation time. This makes our segmentation approach suitable for real-time monitoring of LLM outputs, ensuring that MUCH evaluates UQ methods under realistic deployment constraints. Finally, our evaluations show that current methods still have substantial room for improvement in both performance and efficiency.
Improving Wikipedia Verifiability with AI
Verifiability is a core content policy of Wikipedia: claims that are likely to be challenged need to be backed by citations. There are millions of articles available online and thousands of new articles are released each month. For this reason, finding relevant sources is a difficult task: many claims do not have any references that support them. Furthermore, even existing citations might not support a given claim or become obsolete once the original source is updated or deleted. Hence, maintaining and improving the quality of Wikipedia references is an important challenge and there is a pressing need for better tools to assist humans in this effort. Here, we show that the process of improving references can be tackled with the help of artificial intelligence (AI). We develop a neural network based system, called Side, to identify Wikipedia citations that are unlikely to support their claims, and subsequently recommend better ones from the web. We train this model on existing Wikipedia references, therefore learning from the contributions and combined wisdom of thousands of Wikipedia editors. Using crowd-sourcing, we observe that for the top 10% most likely citations to be tagged as unverifiable by our system, humans prefer our system's suggested alternatives compared to the originally cited reference 70% of the time. To validate the applicability of our system, we built a demo to engage with the English-speaking Wikipedia community and find that Side's first citation recommendation collects over 60% more preferences than existing Wikipedia citations for the same top 10% most likely unverifiable claims according to Side. Our results indicate that an AI-based system could be used, in tandem with humans, to improve the verifiability of Wikipedia. More generally, we hope that our work can be used to assist fact checking efforts and increase the general trustworthiness of information online.
DEFAME: Dynamic Evidence-based FAct-checking with Multimodal Experts
The proliferation of disinformation demands reliable and scalable fact-checking solutions. We present Dynamic Evidence-based FAct-checking with Multimodal Experts (DEFAME), a modular, zero-shot MLLM pipeline for open-domain, text-image claim verification. DEFAME operates in a six-stage process, dynamically selecting the tools and search depth to extract and evaluate textual and visual evidence. Unlike prior approaches that are text-only, lack explainability, or rely solely on parametric knowledge, DEFAME performs end-to-end verification, accounting for images in claims and evidence while generating structured, multimodal reports. Evaluation on the popular benchmarks VERITE, AVerITeC, and MOCHEG shows that DEFAME surpasses all previous methods, establishing itself as the new state-of-the-art fact-checking system for uni- and multimodal fact-checking. Moreover, we introduce a new multimodal benchmark, ClaimReview2024+, featuring claims after the knowledge cutoff of GPT-4o, avoiding data leakage. Here, DEFAME drastically outperforms the GPT-4o baselines, showing temporal generalizability and the potential for real-time fact-checking.
MUSER: A Multi-View Similar Case Retrieval Dataset
Similar case retrieval (SCR) is a representative legal AI application that plays a pivotal role in promoting judicial fairness. However, existing SCR datasets only focus on the fact description section when judging the similarity between cases, ignoring other valuable sections (e.g., the court's opinion) that can provide insightful reasoning process behind. Furthermore, the case similarities are typically measured solely by the textual semantics of the fact descriptions, which may fail to capture the full complexity of legal cases from the perspective of legal knowledge. In this work, we present MUSER, a similar case retrieval dataset based on multi-view similarity measurement and comprehensive legal element with sentence-level legal element annotations. Specifically, we select three perspectives (legal fact, dispute focus, and law statutory) and build a comprehensive and structured label schema of legal elements for each of them, to enable accurate and knowledgeable evaluation of case similarities. The constructed dataset originates from Chinese civil cases and contains 100 query cases and 4,024 candidate cases. We implement several text classification algorithms for legal element prediction and various retrieval methods for retrieving similar cases on MUSER. The experimental results indicate that incorporating legal elements can benefit the performance of SCR models, but further efforts are still required to address the remaining challenges posed by MUSER. The source code and dataset are released at https://github.com/THUlawtech/MUSER.
ProMap: Datasets for Product Mapping in E-commerce
The goal of product mapping is to decide, whether two listings from two different e-shops describe the same products. Existing datasets of matching and non-matching pairs of products, however, often suffer from incomplete product information or contain only very distant non-matching products. Therefore, while predictive models trained on these datasets achieve good results on them, in practice, they are unusable as they cannot distinguish very similar but non-matching pairs of products. This paper introduces two new datasets for product mapping: ProMapCz consisting of 1,495 Czech product pairs and ProMapEn consisting of 1,555 English product pairs of matching and non-matching products manually scraped from two pairs of e-shops. The datasets contain both images and textual descriptions of the products, including their specifications, making them one of the most complete datasets for product mapping. Additionally, the non-matching products were selected in two phases, creating two types of non-matches -- close non-matches and medium non-matches. Even the medium non-matches are pairs of products that are much more similar than non-matches in other datasets -- for example, they still need to have the same brand and similar name and price. After simple data preprocessing, several machine learning algorithms were trained on these and two the other datasets to demonstrate the complexity and completeness of ProMap datasets. ProMap datasets are presented as a golden standard for further research of product mapping filling the gaps in existing ones.
CliniQ: A Multi-faceted Benchmark for Electronic Health Record Retrieval with Semantic Match Assessment
Electronic Health Record (EHR) retrieval plays a pivotal role in various clinical tasks, but its development has been severely impeded by the lack of publicly available benchmarks. In this paper, we introduce a novel public EHR retrieval benchmark, CliniQ, to address this gap. We consider two retrieval settings: Single-Patient Retrieval and Multi-Patient Retrieval, reflecting various real-world scenarios. Single-Patient Retrieval focuses on finding relevant parts within a patient note, while Multi-Patient Retrieval involves retrieving EHRs from multiple patients. We build our benchmark upon 1,000 discharge summary notes along with the ICD codes and prescription labels from MIMIC-III, and collect 1,246 unique queries with 77,206 relevance judgments by further leveraging powerful LLMs as annotators. Additionally, we include a novel assessment of the semantic gap issue in EHR retrieval by categorizing matching types into string match and four types of semantic matches. On our proposed benchmark, we conduct a comprehensive evaluation of various retrieval methods, ranging from conventional exact match to popular dense retrievers. Our experiments find that BM25 sets a strong baseline and performs competitively to the dense retrievers, and general domain dense retrievers surprisingly outperform those designed for the medical domain. In-depth analyses on various matching types reveal the strengths and drawbacks of different methods, enlightening the potential for targeted improvement. We believe that our benchmark will stimulate the research communities to advance EHR retrieval systems.
MMM-Fact: A Multimodal, Multi-Domain Fact-Checking Dataset with Multi-Level Retrieval Difficulty
Misinformation and disinformation demand fact checking that goes beyond simple evidence-based reasoning. Existing benchmarks fall short: they are largely single modality (text-only), span short time horizons, use shallow evidence, cover domains unevenly, and often omit full articles -- obscuring models' real-world capability. We present MMM-Fact, a large-scale benchmark of 125,449 fact-checked statements (1995--2025) across multiple domains, each paired with the full fact-check article and multimodal evidence (text, images, videos, tables) from four fact-checking sites and one news outlet. To reflect verification effort, each statement is tagged with a retrieval-difficulty tier -- Basic (1--5 sources), Intermediate (6--10), and Advanced (>10) -- supporting fairness-aware evaluation for multi-step, cross-modal reasoning. The dataset adopts a three-class veracity scheme (true/false/not enough information) and enables tasks in veracity prediction, explainable fact-checking, complex evidence aggregation, and longitudinal analysis. Baselines with mainstream LLMs show MMM-Fact is markedly harder than prior resources, with performance degrading as evidence complexity rises. MMM-Fact offers a realistic, scalable benchmark for transparent, reliable, multimodal fact-checking.
Authorship Attribution in the Era of LLMs: Problems, Methodologies, and Challenges
Accurate attribution of authorship is crucial for maintaining the integrity of digital content, improving forensic investigations, and mitigating the risks of misinformation and plagiarism. Addressing the imperative need for proper authorship attribution is essential to uphold the credibility and accountability of authentic authorship. The rapid advancements of Large Language Models (LLMs) have blurred the lines between human and machine authorship, posing significant challenges for traditional methods. We presents a comprehensive literature review that examines the latest research on authorship attribution in the era of LLMs. This survey systematically explores the landscape of this field by categorizing four representative problems: (1) Human-written Text Attribution; (2) LLM-generated Text Detection; (3) LLM-generated Text Attribution; and (4) Human-LLM Co-authored Text Attribution. We also discuss the challenges related to ensuring the generalization and explainability of authorship attribution methods. Generalization requires the ability to generalize across various domains, while explainability emphasizes providing transparent and understandable insights into the decisions made by these models. By evaluating the strengths and limitations of existing methods and benchmarks, we identify key open problems and future research directions in this field. This literature review serves a roadmap for researchers and practitioners interested in understanding the state of the art in this rapidly evolving field. Additional resources and a curated list of papers are available and regularly updated at https://llm-authorship.github.io
FACTIFY-5WQA: 5W Aspect-based Fact Verification through Question Answering
Automatic fact verification has received significant attention recently. Contemporary automatic fact-checking systems focus on estimating truthfulness using numerical scores which are not human-interpretable. A human fact-checker generally follows several logical steps to verify a verisimilitude claim and conclude whether its truthful or a mere masquerade. Popular fact-checking websites follow a common structure for fact categorization such as half true, half false, false, pants on fire, etc. Therefore, it is necessary to have an aspect-based (delineating which part(s) are true and which are false) explainable system that can assist human fact-checkers in asking relevant questions related to a fact, which can then be validated separately to reach a final verdict. In this paper, we propose a 5W framework (who, what, when, where, and why) for question-answer-based fact explainability. To that end, we present a semi-automatically generated dataset called FACTIFY-5WQA, which consists of 391, 041 facts along with relevant 5W QAs - underscoring our major contribution to this paper. A semantic role labeling system has been utilized to locate 5Ws, which generates QA pairs for claims using a masked language model. Finally, we report a baseline QA system to automatically locate those answers from evidence documents, which can serve as a baseline for future research in the field. Lastly, we propose a robust fact verification system that takes paraphrased claims and automatically validates them. The dataset and the baseline model are available at https: //github.com/ankuranii/acl-5W-QA
Prediction without Preclusion: Recourse Verification with Reachable Sets
Machine learning models are often used to decide who will receive a loan, a job interview, or a public benefit. Standard techniques to build these models use features about people but overlook their actionability. In turn, models can assign predictions that are fixed, meaning that consumers who are denied loans, interviews, or benefits may be permanently locked out from access to credit, employment, or assistance. In this work, we introduce a formal testing procedure to flag models that assign fixed predictions that we call recourse verification. We develop machinery to reliably determine if a given model can provide recourse to its decision subjects from a set of user-specified actionability constraints. We demonstrate how our tools can ensure recourse and adversarial robustness in real-world datasets and use them to study the infeasibility of recourse in real-world lending datasets. Our results highlight how models can inadvertently assign fixed predictions that permanently bar access, and we provide tools to design algorithms that account for actionability when developing models.
Valentine: Evaluating Matching Techniques for Dataset Discovery
Data scientists today search large data lakes to discover and integrate datasets. In order to bring together disparate data sources, dataset discovery methods rely on some form of schema matching: the process of establishing correspondences between datasets. Traditionally, schema matching has been used to find matching pairs of columns between a source and a target schema. However, the use of schema matching in dataset discovery methods differs from its original use. Nowadays schema matching serves as a building block for indicating and ranking inter-dataset relationships. Surprisingly, although a discovery method's success relies highly on the quality of the underlying matching algorithms, the latest discovery methods employ existing schema matching algorithms in an ad-hoc fashion due to the lack of openly-available datasets with ground truth, reference method implementations, and evaluation metrics. In this paper, we aim to rectify the problem of evaluating the effectiveness and efficiency of schema matching methods for the specific needs of dataset discovery. To this end, we propose Valentine, an extensible open-source experiment suite to execute and organize large-scale automated matching experiments on tabular data. Valentine includes implementations of seminal schema matching methods that we either implemented from scratch (due to absence of open source code) or imported from open repositories. The contributions of Valentine are: i) the definition of four schema matching scenarios as encountered in dataset discovery methods, ii) a principled dataset fabrication process tailored to the scope of dataset discovery methods and iii) the most comprehensive evaluation of schema matching techniques to date, offering insight on the strengths and weaknesses of existing techniques, that can serve as a guide for employing schema matching in future dataset discovery methods.
Atomic Reasoning for Scientific Table Claim Verification
Scientific texts often convey authority due to their technical language and complex data. However, this complexity can sometimes lead to the spread of misinformation. Non-experts are particularly susceptible to misleading claims based on scientific tables due to their high information density and perceived credibility. Existing table claim verification models, including state-of-the-art large language models (LLMs), often struggle with precise fine-grained reasoning, resulting in errors and a lack of precision in verifying scientific claims. Inspired by Cognitive Load Theory, we propose that enhancing a model's ability to interpret table-based claims involves reducing cognitive load by developing modular, reusable reasoning components (i.e., atomic skills). We introduce a skill-chaining schema that dynamically composes these skills to facilitate more accurate and generalizable reasoning with a reduced cognitive load. To evaluate this, we create SciAtomicBench, a cross-domain benchmark with fine-grained reasoning annotations. With only 350 fine-tuning examples, our model trained by atomic reasoning outperforms GPT-4o's chain-of-thought method, achieving state-of-the-art results with far less training data.
Linking Datasets on Organizations Using Half A Billion Open Collaborated Records
Scholars studying organizations often work with multiple datasets lacking shared unique identifiers or covariates. In such situations, researchers may turn to approximate string matching methods to combine datasets. String matching, although useful, faces fundamental challenges. Even when two strings appear similar to humans, fuzzy matching often does not work because it fails to adapt to the informativeness of the character combinations presented. Worse, many entities have multiple names that are dissimilar (e.g., "Fannie Mae" and "Federal National Mortgage Association"), a case where string matching has little hope of succeeding. This paper introduces data from a prominent employment-related networking site (LinkedIn) as a tool to address these problems. We propose interconnected approaches to leveraging the massive amount of information from LinkedIn regarding organizational name-to-name links. The first approach builds a machine learning model for predicting matches from character strings, treating the trillions of user-contributed organizational name pairs as a training corpus: this approach constructs a string matching metric that explicitly maximizes match probabilities. A second approach identifies relationships between organization names using network representations of the LinkedIn data. A third approach combines the first and second. We document substantial improvements over fuzzy matching in applications, making all methods accessible in open-source software ("LinkOrgs").
Can AI Examine Novelty of Patents?: Novelty Evaluation Based on the Correspondence between Patent Claim and Prior Art
Assessing the novelty of patent claims is a critical yet challenging task traditionally performed by patent examiners. While advancements in NLP have enabled progress in various patent-related tasks, novelty assessment remains unexplored. This paper introduces a novel challenge by evaluating the ability of large language models (LLMs) to assess patent novelty by comparing claims with cited prior art documents, following the process similar to that of patent examiners done. We present the first dataset specifically designed for novelty evaluation, derived from real patent examination cases, and analyze the capabilities of LLMs to address this task. Our study reveals that while classification models struggle to effectively assess novelty, generative models make predictions with a reasonable level of accuracy, and their explanations are accurate enough to understand the relationship between the target patent and prior art. These findings demonstrate the potential of LLMs to assist in patent evaluation, reducing the workload for both examiners and applicants. Our contributions highlight the limitations of current models and provide a foundation for improving AI-driven patent analysis through advanced models and refined datasets.
Machine Learning with Multitype Protected Attributes: Intersectional Fairness through Regularisation
Ensuring equitable treatment (fairness) across protected attributes (such as gender or ethnicity) is a critical issue in machine learning. Most existing literature focuses on binary classification, but achieving fairness in regression tasks-such as insurance pricing or hiring score assessments-is equally important. Moreover, anti-discrimination laws also apply to continuous attributes, such as age, for which many existing methods are not applicable. In practice, multiple protected attributes can exist simultaneously; however, methods targeting fairness across several attributes often overlook so-called "fairness gerrymandering", thereby ignoring disparities among intersectional subgroups (e.g., African-American women or Hispanic men). In this paper, we propose a distance covariance regularisation framework that mitigates the association between model predictions and protected attributes, in line with the fairness definition of demographic parity, and that captures both linear and nonlinear dependencies. To enhance applicability in the presence of multiple protected attributes, we extend our framework by incorporating two multivariate dependence measures based on distance covariance: the previously proposed joint distance covariance (JdCov) and our novel concatenated distance covariance (CCdCov), which effectively address fairness gerrymandering in both regression and classification tasks involving protected attributes of various types. We discuss and illustrate how to calibrate regularisation strength, including a method based on Jensen-Shannon divergence, which quantifies dissimilarities in prediction distributions across groups. We apply our framework to the COMPAS recidivism dataset and a large motor insurance claims dataset.
Model-Task Alignment Drives Distinct RL Outcomes
Recent advances in applying reinforcement learning (RL) to large language models (LLMs) have led to substantial progress. In particular, a series of remarkable yet often counterintuitive phenomena have been reported in LLMs, exhibiting patterns not typically observed in traditional RL settings. For example, notable claims include that a single training example can match the performance achieved with an entire dataset, that the reward signal does not need to be very accurate, and that training solely with negative samples can match or even surpass sophisticated reward-based methods. However, the precise conditions under which these observations hold - and, critically, when they fail - remain unclear. In this work, we identify a key factor that differentiates RL observations: whether the pretrained model already exhibits strong Model-Task Alignment, as measured by pass@k accuracy on the evaluated task. Through a systematic and comprehensive examination of a series of counterintuitive claims, supported by rigorous experimental validation across different model architectures and task domains, our findings show that while standard RL training remains consistently robust across settings, many of these counterintuitive results arise only when the model and task already exhibit strong model-task alignment. In contrast, these techniques fail to drive substantial learning in more challenging regimes, where standard RL methods remain effective.
MM-Claims: A Dataset for Multimodal Claim Detection in Social Media
In recent years, the problem of misinformation on the web has become widespread across languages, countries, and various social media platforms. Although there has been much work on automated fake news detection, the role of images and their variety are not well explored. In this paper, we investigate the roles of image and text at an earlier stage of the fake news detection pipeline, called claim detection. For this purpose, we introduce a novel dataset, MM-Claims, which consists of tweets and corresponding images over three topics: COVID-19, Climate Change and broadly Technology. The dataset contains roughly 86000 tweets, out of which 3400 are labeled manually by multiple annotators for the training and evaluation of multimodal models. We describe the dataset in detail, evaluate strong unimodal and multimodal baselines, and analyze the potential and drawbacks of current models.
Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques
This study explores the potential of utilizing administrative claims data, combined with advanced machine learning and deep learning techniques, to predict the progression of Chronic Kidney Disease (CKD) to End-Stage Renal Disease (ESRD). We analyze a comprehensive, 10-year dataset provided by a major health insurance organization to develop prediction models for multiple observation windows using traditional machine learning methods such as Random Forest and XGBoost as well as deep learning approaches such as Long Short-Term Memory (LSTM) networks. Our findings demonstrate that the LSTM model, particularly with a 24-month observation window, exhibits superior performance in predicting ESRD progression, outperforming existing models in the literature. We further apply SHapley Additive exPlanations (SHAP) analysis to enhance interpretability, providing insights into the impact of individual features on predictions at the individual patient level. This study underscores the value of leveraging administrative claims data for CKD management and predicting ESRD progression.
Large Language Models as Attribution Regularizers for Efficient Model Training
Large Language Models (LLMs) have demonstrated remarkable performance across diverse domains. However, effectively leveraging their vast knowledge for training smaller downstream models remains an open challenge, especially in domains like tabular data learning, where simpler models are often preferred due to interpretability and efficiency. In this paper, we introduce a novel yet straightforward method for incorporating LLM-generated global task feature attributions into the training process of smaller networks. Specifically, we propose an attribution-matching regularization term that aligns the training dynamics of the smaller model with the insights provided by the LLM. By doing so, our approach yields superior performance in few-shot learning scenarios. Notably, our method requires only black-box API access to the LLM, making it easy to integrate into existing training pipelines with minimal computational overhead. Furthermore, we demonstrate how this method can be used to address common issues in real-world datasets, such as skewness and bias. By integrating high-level knowledge from LLMs, our approach improves generalization, even when training data is limited or imbalanced. We validate its effectiveness through extensive experiments across multiple tasks, demonstrating improved learning efficiency and model robustness.
SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours
Media is full of false claims. Even Oxford Dictionaries named "post-truth" as the word of 2016. This makes it more important than ever to build systems that can identify the veracity of a story, and the kind of discourse there is around it. RumourEval is a SemEval shared task that aims to identify and handle rumours and reactions to them, in text. We present an annotation scheme, a large dataset covering multiple topics - each having their own families of claims and replies - and use these to pose two concrete challenges as well as the results achieved by participants on these challenges.
Embedding Trust: Semantic Isotropy Predicts Nonfactuality in Long-Form Text Generation
To deploy large language models (LLMs) in high-stakes application domains that require substantively accurate responses to open-ended prompts, we need reliable, computationally inexpensive methods that assess the trustworthiness of long-form responses generated by LLMs. However, existing approaches often rely on claim-by-claim fact-checking, which is computationally expensive and brittle in long-form responses to open-ended prompts. In this work, we introduce semantic isotropy -- the degree of uniformity across normalized text embeddings on the unit sphere -- and use it to assess the trustworthiness of long-form responses generated by LLMs. To do so, we generate several long-form responses, embed them, and estimate the level of semantic isotropy of these responses as the angular dispersion of the embeddings on the unit sphere. We find that higher semantic isotropy -- that is, greater embedding dispersion -- reliably signals lower factual consistency across samples. Our approach requires no labeled data, no fine-tuning, and no hyperparameter selection, and can be used with open- or closed-weight embedding models. Across multiple domains, our method consistently outperforms existing approaches in predicting nonfactuality in long-form responses using only a handful of samples -- offering a practical, low-cost approach for integrating trust assessment into real-world LLM workflows.
Which Side Are You On? A Multi-task Dataset for End-to-End Argument Summarisation and Evaluation
With the recent advances of large language models (LLMs), it is no longer infeasible to build an automated debate system that helps people to synthesise persuasive arguments. Previous work attempted this task by integrating multiple components. In our work, we introduce an argument mining dataset that captures the end-to-end process of preparing an argumentative essay for a debate, which covers the tasks of claim and evidence identification (Task 1 ED), evidence convincingness ranking (Task 2 ECR), argumentative essay summarisation and human preference ranking (Task 3 ASR) and metric learning for automated evaluation of resulting essays, based on human feedback along argument quality dimensions (Task 4 SQE). Our dataset contains 14k examples of claims that are fully annotated with the various properties supporting the aforementioned tasks. We evaluate multiple generative baselines for each of these tasks, including representative LLMs. We find, that while they show promising results on individual tasks in our benchmark, their end-to-end performance on all four tasks in succession deteriorates significantly, both in automated measures as well as in human-centred evaluation. This challenge presented by our proposed dataset motivates future research on end-to-end argument mining and summarisation. The repository of this project is available at https://github.com/HarrywillDr/ArgSum-Datatset
AppealCase: A Dataset and Benchmark for Civil Case Appeal Scenarios
Recent advances in LegalAI have primarily focused on individual case judgment analysis, often overlooking the critical appellate process within the judicial system. Appeals serve as a core mechanism for error correction and ensuring fair trials, making them highly significant both in practice and in research. To address this gap, we present the AppealCase dataset, consisting of 10,000 pairs of real-world, matched first-instance and second-instance documents across 91 categories of civil cases. The dataset also includes detailed annotations along five dimensions central to appellate review: judgment reversals, reversal reasons, cited legal provisions, claim-level decisions, and whether there is new information in the second instance. Based on these annotations, we propose five novel LegalAI tasks and conduct a comprehensive evaluation across 20 mainstream models. Experimental results reveal that all current models achieve less than 50% F1 scores on the judgment reversal prediction task, highlighting the complexity and challenge of the appeal scenario. We hope that the AppealCase dataset will spur further research in LegalAI for appellate case analysis and contribute to improving consistency in judicial decision-making.
Fact-Checking the Output of Large Language Models via Token-Level Uncertainty Quantification
Large language models (LLMs) are notorious for hallucinating, i.e., producing erroneous claims in their output. Such hallucinations can be dangerous, as occasional factual inaccuracies in the generated text might be obscured by the rest of the output being generally factual, making it extremely hard for the users to spot them. Current services that leverage LLMs usually do not provide any means for detecting unreliable generations. Here, we aim to bridge this gap. In particular, we propose a novel fact-checking and hallucination detection pipeline based on token-level uncertainty quantification. Uncertainty scores leverage information encapsulated in the output of a neural network or its layers to detect unreliable predictions, and we show that they can be used to fact-check the atomic claims in the LLM output. Moreover, we present a novel token-level uncertainty quantification method that removes the impact of uncertainty about what claim to generate on the current step and what surface form to use. Our method Claim Conditioned Probability (CCP) measures only the uncertainty of particular claim value expressed by the model. Experiments on the task of biography generation demonstrate strong improvements for CCP compared to the baselines for six different LLMs and three languages. Human evaluation reveals that the fact-checking pipeline based on uncertainty quantification is competitive with a fact-checking tool that leverages external knowledge.
