new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

Disentangle then Parse:Night-time Semantic Segmentation with Illumination Disentanglement

Most prior semantic segmentation methods have been developed for day-time scenes, while typically underperforming in night-time scenes due to insufficient and complicated lighting conditions. In this work, we tackle this challenge by proposing a novel night-time semantic segmentation paradigm, i.e., disentangle then parse (DTP). DTP explicitly disentangles night-time images into light-invariant reflectance and light-specific illumination components and then recognizes semantics based on their adaptive fusion. Concretely, the proposed DTP comprises two key components: 1) Instead of processing lighting-entangled features as in prior works, our Semantic-Oriented Disentanglement (SOD) framework enables the extraction of reflectance component without being impeded by lighting, allowing the network to consistently recognize the semantics under cover of varying and complicated lighting conditions. 2) Based on the observation that the illumination component can serve as a cue for some semantically confused regions, we further introduce an Illumination-Aware Parser (IAParser) to explicitly learn the correlation between semantics and lighting, and aggregate the illumination features to yield more precise predictions. Extensive experiments on the night-time segmentation task with various settings demonstrate that DTP significantly outperforms state-of-the-art methods. Furthermore, with negligible additional parameters, DTP can be directly used to benefit existing day-time methods for night-time segmentation.

  • 6 authors
·
Jul 18, 2023

OLATverse: A Large-scale Real-world Object Dataset with Precise Lighting Control

We introduce OLATverse, a large-scale dataset comprising around 9M images of 765 real-world objects, captured from multiple viewpoints under a diverse set of precisely controlled lighting conditions. While recent advances in object-centric inverse rendering, novel view synthesis and relighting have shown promising results, most techniques still heavily rely on the synthetic datasets for training and small-scale real-world datasets for benchmarking, which limits their realism and generalization. To address this gap, OLATverse offers two key advantages over existing datasets: large-scale coverage of real objects and high-fidelity appearance under precisely controlled illuminations. Specifically, OLATverse contains 765 common and uncommon real-world objects, spanning a wide range of material categories. Each object is captured using 35 DSLR cameras and 331 individually controlled light sources, enabling the simulation of diverse illumination conditions. In addition, for each object, we provide well-calibrated camera parameters, accurate object masks, photometric surface normals, and diffuse albedo as auxiliary resources. We also construct an extensive evaluation set, establishing the first comprehensive real-world object-centric benchmark for inverse rendering and normal estimation. We believe that OLATverse represents a pivotal step toward integrating the next generation of inverse rendering and relighting methods with real-world data. The full dataset, along with all post-processing workflows, will be publicly released at https://vcai.mpi-inf.mpg.de/projects/OLATverse/.

  • 10 authors
·
Nov 4

Improving Lens Flare Removal with General Purpose Pipeline and Multiple Light Sources Recovery

When taking images against strong light sources, the resulting images often contain heterogeneous flare artifacts. These artifacts can importantly affect image visual quality and downstream computer vision tasks. While collecting real data pairs of flare-corrupted/flare-free images for training flare removal models is challenging, current methods utilize the direct-add approach to synthesize data. However, these methods do not consider automatic exposure and tone mapping in image signal processing pipeline (ISP), leading to the limited generalization capability of deep models training using such data. Besides, existing methods struggle to handle multiple light sources due to the different sizes, shapes and illuminance of various light sources. In this paper, we propose a solution to improve the performance of lens flare removal by revisiting the ISP and remodeling the principle of automatic exposure in the synthesis pipeline and design a more reliable light sources recovery strategy. The new pipeline approaches realistic imaging by discriminating the local and global illumination through convex combination, avoiding global illumination shifting and local over-saturation. Our strategy for recovering multiple light sources convexly averages the input and output of the neural network based on illuminance levels, thereby avoiding the need for a hard threshold in identifying light sources. We also contribute a new flare removal testing dataset containing the flare-corrupted images captured by ten types of consumer electronics. The dataset facilitates the verification of the generalization capability of flare removal methods. Extensive experiments show that our solution can effectively improve the performance of lens flare removal and push the frontier toward more general situations.

  • 6 authors
·
Aug 31, 2023

Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement

Low-light image enhancement, particularly in cross-domain tasks such as mapping from the raw domain to the sRGB domain, remains a significant challenge. Many deep learning-based methods have been developed to address this issue and have shown promising results in recent years. However, single-stage methods, which attempt to unify the complex mapping across both domains, leading to limited denoising performance. In contrast, existing two-stage approaches typically overlook the characteristic of demosaicing within the Image Signal Processing (ISP) pipeline, leading to color distortions under varying lighting conditions, especially in low-light scenarios. To address these issues, we propose a novel Mamba-based method customized for low light RAW images, called RAWMamba, to effectively handle raw images with different CFAs. Furthermore, we introduce a Retinex Decomposition Module (RDM) grounded in Retinex prior, which decouples illumination from reflectance to facilitate more effective denoising and automatic non-linear exposure correction, reducing the effect of manual linear illumination enhancement. By bridging demosaicing and denoising, better enhancement for low light RAW images is achieved. Experimental evaluations conducted on public datasets SID and MCR demonstrate that our proposed RAWMamba achieves state-of-the-art performance on cross-domain mapping. The code is available at https://github.com/Cynicarlos/RetinexRawMamba.

  • 6 authors
·
Sep 11, 2024