new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Semantic Grounding Index: Geometric Bounds on Context Engagement in RAG Systems

When retrieval-augmented generation (RAG) systems hallucinate, what geometric trace does this leave in embedding space? We introduce the Semantic Grounding Index (SGI), defined as the ratio of angular distances from the response to the question versus the context on the unit hypersphere S^{d-1}.Our central finding is semantic laziness: hallucinated responses remain angularly proximate to questions rather than departing toward retrieved contexts. On HaluEval (n=5,000), we observe large effect sizes (Cohen's d ranging from 0.92 to 1.28) across five embedding models with mean cross-model correlation r=0.85. Crucially, we derive from the spherical triangle inequality that SGI's discriminative power should increase with question-context angular separation θ(q,c)-a theoretical prediction confirmed empirically: effect size rises monotonically from d=0.61 -low θ(q,c), to d=1.27 -high θ(q,c), with AUC improving from 0.72 to 0.83. Subgroup analysis reveals that SGI excels on long responses (d=2.05) and short questions (d=1.22), while remaining robust across context lengths. Calibration analysis yields ECE=0.10, indicating SGI scores can serve as probability estimates, not merely rankings. A critical negative result on TruthfulQA (AUC=0.478) establishes that angular geometry measures topical engagement rather than factual accuracy. SGI provides computationally efficient, theoretically grounded infrastructure for identifying responses that warrant verification in production RAG deployments.

  • 1 authors
·
Dec 15, 2025

Program Synthesis with Large Language Models

This paper explores the limits of the current generation of large language models for program synthesis in general purpose programming languages. We evaluate a collection of such models (with between 244M and 137B parameters) on two new benchmarks, MBPP and MathQA-Python, in both the few-shot and fine-tuning regimes. Our benchmarks are designed to measure the ability of these models to synthesize short Python programs from natural language descriptions. The Mostly Basic Programming Problems (MBPP) dataset contains 974 programming tasks, designed to be solvable by entry-level programmers. The MathQA-Python dataset, a Python version of the MathQA benchmark, contains 23914 problems that evaluate the ability of the models to synthesize code from more complex text. On both datasets, we find that synthesis performance scales log-linearly with model size. Our largest models, even without finetuning on a code dataset, can synthesize solutions to 59.6 percent of the problems from MBPP using few-shot learning with a well-designed prompt. Fine-tuning on a held-out portion of the dataset improves performance by about 10 percentage points across most model sizes. On the MathQA-Python dataset, the largest fine-tuned model achieves 83.8 percent accuracy. Going further, we study the model's ability to engage in dialog about code, incorporating human feedback to improve its solutions. We find that natural language feedback from a human halves the error rate compared to the model's initial prediction. Additionally, we conduct an error analysis to shed light on where these models fall short and what types of programs are most difficult to generate. Finally, we explore the semantic grounding of these models by fine-tuning them to predict the results of program execution. We find that even our best models are generally unable to predict the output of a program given a specific input.

  • 11 authors
·
Aug 15, 2021

Spatially-Grounded Document Retrieval via Patch-to-Region Relevance Propagation

Late-interaction multimodal retrieval models like ColPali achieve state-of-the-art document retrieval by embedding pages as images and computing fine-grained similarity between query tokens and visual patches. However, they return entire pages rather than specific regions, limiting utility for retrieval-augmented generation (RAG) where precise context is paramount. Conversely, OCR-based systems extract structured text with bounding box coordinates but lack semantic grounding for relevance assessment. We propose a hybrid architecture that unifies these paradigms: using ColPali's patch-level similarity scores as spatial relevance filters over OCR-extracted regions. We formalize the coordinate mapping between vision transformer patch grids and OCR bounding boxes, introduce intersection metrics for relevance propagation, and establish theoretical bounds on area efficiency. We evaluate on BBox-DocVQA with ground-truth bounding boxes. For within-page localization (given correct page retrieval), ColQwen3-4B with percentile-50 thresholding achieves 59.7% hit rate at [email protected] (84.4% at [email protected], 35.8% at [email protected]), with mean IoU of 0.569, compared to ~6.7% for random region selection. Our approach reduces context tokens by 28.8% compared to returning all OCR regions and by 52.3% compared to full-page image tokens. Our approach operates at inference time without additional training. We release Snappy, an open-source implementation at https://github.com/athrael-soju/Snappy.

  • 1 authors
·
Dec 2, 2025

Nav-R1: Reasoning and Navigation in Embodied Scenes

Embodied navigation requires agents to integrate perception, reasoning, and action for robust interaction in complex 3D environments. Existing approaches often suffer from incoherent and unstable reasoning traces that hinder generalization across diverse environments, and difficulty balancing long-horizon semantic reasoning with low-latency control for real-time navigation. To address these challenges, we propose Nav-R1, an embodied foundation model that unifies reasoning in embodied environments. We first construct Nav-CoT-110K, a large-scale dataset of step-by-step Chains-of-Thought (CoT) for embodied tasks, which enables cold-start initialization with structured reasoning. Building on this foundation, we design a GRPO-based reinforcement learning framework with three complementary rewards: format, understanding, and navigation, to improve structural adherence, semantic grounding, and path fidelity. Furthermore, we introduce a Fast-in-Slow reasoning paradigm, decoupling deliberate semantic reasoning from low-latency reactive control for efficient yet coherent navigation. Extensive evaluations on embodied AI benchmarks demonstrate that Nav-R1 consistently outperforms strong baselines, with over 8% average improvement in reasoning and navigation performance. Real-world deployment on a mobile robot further validates its robustness under limited onboard resources. Code: https://github.com/AIGeeksGroup/Nav-R1. Website: https://aigeeksgroup.github.io/Nav-R1.

PekingUniversity Peking University
·
Sep 13, 2025 2

InternVLA-A1: Unifying Understanding, Generation and Action for Robotic Manipulation

Prevalent Vision-Language-Action (VLA) models are typically built upon Multimodal Large Language Models (MLLMs) and demonstrate exceptional proficiency in semantic understanding, but they inherently lack the capability to deduce physical world dynamics. Consequently, recent approaches have shifted toward World Models, typically formulated via video prediction; however, these methods often suffer from a lack of semantic grounding and exhibit brittleness when handling prediction errors. To synergize semantic understanding with dynamic predictive capabilities, we present InternVLA-A1. This model employs a unified Mixture-of-Transformers architecture, coordinating three experts for scene understanding, visual foresight generation, and action execution. These components interact seamlessly through a unified masked self-attention mechanism. Building upon InternVL3 and Qwen3-VL, we instantiate InternVLA-A1 at 2B and 3B parameter scales. We pre-train these models on hybrid synthetic-real datasets spanning InternData-A1 and Agibot-World, covering over 533M frames. This hybrid training strategy effectively harnesses the diversity of synthetic simulation data while minimizing the sim-to-real gap. We evaluated InternVLA-A1 across 12 real-world robotic tasks and simulation benchmark. It significantly outperforms leading models like pi0 and GR00T N1.5, achieving a 14.5\% improvement in daily tasks and a 40\%-73.3\% boost in dynamic settings, such as conveyor belt sorting.

  • 42 authors
·
Jan 5

The SAM2-to-SAM3 Gap in the Segment Anything Model Family: Why Prompt-Based Expertise Fails in Concept-Driven Image Segmentation

This paper investigates the fundamental discontinuity between the latest two Segment Anything Models: SAM2 and SAM3. We explain why the expertise in prompt-based segmentation of SAM2 does not transfer to the multimodal concept-driven paradigm of SAM3. SAM2 operates through spatial prompts points, boxes, and masks yielding purely geometric and temporal segmentation. In contrast, SAM3 introduces a unified vision-language architecture capable of open-vocabulary reasoning, semantic grounding, contrastive alignment, and exemplar-based concept understanding. We structure this analysis through five core components: (1) a Conceptual Break Between Prompt-Based and Concept-Based Segmentation, contrasting spatial prompt semantics of SAM2 with multimodal fusion and text-conditioned mask generation of SAM3; (2) Architectural Divergence, detailing pure vision-temporal design of SAM2 versus integration of vision-language encoders, geometry and exemplar encoders, fusion modules, DETR-style decoders, object queries, and ambiguity-handling via Mixture-of-Experts in SAM3; (3) Dataset and Annotation Differences, contrasting SA-V video masks with multimodal concept-annotated corpora of SAM3; (4) Training and Hyperparameter Distinctions, showing why SAM2 optimization knowledge does not apply to SAM3; and (5) Evaluation, Metrics, and Failure Modes, outlining the transition from geometric IoU metrics to semantic, open-vocabulary evaluation. Together, these analyses establish SAM3 as a new class of segmentation foundation model and chart future directions for the emerging concept-driven segmentation era.

cornell Cornell University
·
Dec 4, 2025 2

Compressed and Smooth Latent Space for Text Diffusion Modeling

Autoregressive language models dominate modern text generation, yet their sequential nature introduces fundamental limitations: decoding is slow, and maintaining global coherence remains challenging. Diffusion models offer a promising alternative by enabling parallel generation and flexible control; however, their application to text generation is hindered by the high dimensionality of token-level representations. We introduce Cosmos, a novel approach to text generation that operates entirely in a compressed, smooth latent space tailored specifically for diffusion. This space is learned using an autoencoder trained simultaneously for token-level reconstruction and alignment with frozen activations from a pretrained language encoder, providing robust semantic grounding and enabling effective perturbation-based augmentations. Empirically, we demonstrate that text representations can be compressed by 8times while maintaining generation quality comparable to token-level diffusion models. Furthermore, increasing the latent sequence length allows Cosmos to surpass both diffusion-based and autoregressive baselines. We evaluate Cosmos on four diverse generative tasks including story generation, question generation, summarization, and detoxification and compare it with various generative paradigms. Cosmos achieves comparable or superior generation quality while offering more than 2times faster inference.

  • 5 authors
·
Jun 26, 2025

Learning Interpretable Representations Leads to Semantically Faithful EEG-to-Text Generation

Pretrained generative models have opened new frontiers in brain decoding by enabling the synthesis of realistic texts and images from non-invasive brain recordings. However, the reliability of such outputs remains questionable--whether they truly reflect semantic activation in the brain, or are merely hallucinated by the powerful generative models. In this paper, we focus on EEG-to-text decoding and address its hallucination issue through the lens of posterior collapse. Acknowledging the underlying mismatch in information capacity between EEG and text, we reframe the decoding task as semantic summarization of core meanings rather than previously verbatim reconstruction of stimulus texts. To this end, we propose the Generative Language Inspection Model (GLIM), which emphasizes learning informative and interpretable EEG representations to improve semantic grounding under heterogeneous and small-scale data conditions. Experiments on the public ZuCo dataset demonstrate that GLIM consistently generates fluent, EEG-grounded sentences without teacher forcing. Moreover, it supports more robust evaluation beyond text similarity, through EEG-text retrieval and zero-shot semantic classification across sentiment categories, relation types, and corpus topics. Together, our architecture and evaluation protocols lay the foundation for reliable and scalable benchmarking in generative brain decoding.

  • 3 authors
·
May 21, 2025

MolmoAct: Action Reasoning Models that can Reason in Space

Reasoning is central to purposeful action, yet most robotic foundation models map perception and instructions directly to control, which limits adaptability, generalization, and semantic grounding. We introduce Action Reasoning Models (ARMs), a class of vision-language-action models that integrate perception, planning, and control through a structured three-stage pipeline. Our model, MolmoAct, encodes observations and instructions into depth-aware perception tokens, generates mid-level spatial plans as editable trajectory traces, and predicts precise low-level actions, enabling explainable and steerable behavior. MolmoAct-7B-D achieves strong performance across simulation and real-world settings: 70.5% zero-shot accuracy on SimplerEnv Visual Matching tasks, surpassing closed-source Pi-0 and GR00T N1; 86.6% average success on LIBERO, including an additional 6.3% gain over ThinkAct on long-horizon tasks; and in real-world fine-tuning, an additional 10% (single-arm) and an additional 22.7% (bimanual) task progression over Pi-0-FAST. It also outperforms baselines by an additional 23.3% on out-of-distribution generalization and achieves top human-preference scores for open-ended instruction following and trajectory steering. Furthermore, we release, for the first time, the MolmoAct Dataset -- a mid-training robot dataset comprising over 10,000 high quality robot trajectories across diverse scenarios and tasks. Training with this dataset yields an average 5.5% improvement in general performance over the base model. We release all model weights, training code, our collected dataset, and our action reasoning dataset, establishing MolmoAct as both a state-of-the-art robotics foundation model and an open blueprint for building ARMs that transform perception into purposeful action through structured reasoning. Blogpost: https://allenai.org/blog/molmoact

allenai Ai2
·
Aug 11, 2025 2

MotionFlux: Efficient Text-Guided Motion Generation through Rectified Flow Matching and Preference Alignment

Motion generation is essential for animating virtual characters and embodied agents. While recent text-driven methods have made significant strides, they often struggle with achieving precise alignment between linguistic descriptions and motion semantics, as well as with the inefficiencies of slow, multi-step inference. To address these issues, we introduce TMR++ Aligned Preference Optimization (TAPO), an innovative framework that aligns subtle motion variations with textual modifiers and incorporates iterative adjustments to reinforce semantic grounding. To further enable real-time synthesis, we propose MotionFLUX, a high-speed generation framework based on deterministic rectified flow matching. Unlike traditional diffusion models, which require hundreds of denoising steps, MotionFLUX constructs optimal transport paths between noise distributions and motion spaces, facilitating real-time synthesis. The linearized probability paths reduce the need for multi-step sampling typical of sequential methods, significantly accelerating inference time without sacrificing motion quality. Experimental results demonstrate that, together, TAPO and MotionFLUX form a unified system that outperforms state-of-the-art approaches in both semantic consistency and motion quality, while also accelerating generation speed. The code and pretrained models will be released.

  • 5 authors
·
Aug 26, 2025 2

Beyond Artificial Misalignment: Detecting and Grounding Semantic-Coordinated Multimodal Manipulations

The detection and grounding of manipulated content in multimodal data has emerged as a critical challenge in media forensics. While existing benchmarks demonstrate technical progress, they suffer from misalignment artifacts that poorly reflect real-world manipulation patterns: practical attacks typically maintain semantic consistency across modalities, whereas current datasets artificially disrupt cross-modal alignment, creating easily detectable anomalies. To bridge this gap, we pioneer the detection of semantically-coordinated manipulations where visual edits are systematically paired with semantically consistent textual descriptions. Our approach begins with constructing the first Semantic-Aligned Multimodal Manipulation (SAMM) dataset, generated through a two-stage pipeline: 1) applying state-of-the-art image manipulations, followed by 2) generation of contextually-plausible textual narratives that reinforce the visual deception. Building on this foundation, we propose a Retrieval-Augmented Manipulation Detection and Grounding (RamDG) framework. RamDG commences by harnessing external knowledge repositories to retrieve contextual evidence, which serves as the auxiliary texts and encoded together with the inputs through our image forgery grounding and deep manipulation detection modules to trace all manipulations. Extensive experiments demonstrate our framework significantly outperforms existing methods, achieving 2.06\% higher detection accuracy on SAMM compared to state-of-the-art approaches. The dataset and code are publicly available at https://github.com/shen8424/SAMM-RamDG-CAP.

  • 5 authors
·
Sep 16, 2025

Explainable Semantic Space by Grounding Language to Vision with Cross-Modal Contrastive Learning

In natural language processing, most models try to learn semantic representations merely from texts. The learned representations encode the distributional semantics but fail to connect to any knowledge about the physical world. In contrast, humans learn language by grounding concepts in perception and action and the brain encodes grounded semantics for cognition. Inspired by this notion and recent work in vision-language learning, we design a two-stream model for grounding language learning in vision. The model includes a VGG-based visual stream and a Bert-based language stream. The two streams merge into a joint representational space. Through cross-modal contrastive learning, the model first learns to align visual and language representations with the MS COCO dataset. The model further learns to retrieve visual objects with language queries through a cross-modal attention module and to infer the visual relations between the retrieved objects through a bilinear operator with the Visual Genome dataset. After training, the language stream of this model is a stand-alone language model capable of embedding concepts in a visually grounded semantic space. This semantic space manifests principal dimensions explainable with human intuition and neurobiological knowledge. Word embeddings in this semantic space are predictive of human-defined norms of semantic features and are segregated into perceptually distinctive clusters. Furthermore, the visually grounded language model also enables compositional language understanding based on visual knowledge and multimodal image search with queries based on images, texts, or their combinations.

  • 4 authors
·
Nov 13, 2021

Grounding Text-to-Image Diffusion Models for Controlled High-Quality Image Generation

Text-to-image (T2I) generative diffusion models have demonstrated outstanding performance in synthesizing diverse, high-quality visuals from text captions. Several layout-to-image models have been developed to control the generation process by utilizing a wide range of layouts, such as segmentation maps, edges, and human keypoints. In this work, we propose ObjectDiffusion, a model that conditions T2I diffusion models on semantic and spatial grounding information, enabling the precise rendering and placement of desired objects in specific locations defined by bounding boxes. To achieve this, we make substantial modifications to the network architecture introduced in ControlNet to integrate it with the grounding method proposed in GLIGEN. We fine-tune ObjectDiffusion on the COCO2017 training dataset and evaluate it on the COCO2017 validation dataset. Our model improves the precision and quality of controllable image generation, achieving an AP_{50} of 46.6, an AR of 44.5, and an FID of 19.8, outperforming the current SOTA model trained on open-source datasets across all three metrics. ObjectDiffusion demonstrates a distinctive capability in synthesizing diverse, high-quality, high-fidelity images that seamlessly conform to the semantic and spatial control layout. Evaluated in qualitative and quantitative tests, ObjectDiffusion exhibits remarkable grounding capabilities in closed-set and open-set vocabulary settings across a wide variety of contexts. The qualitative assessment verifies the ability of ObjectDiffusion to generate multiple detailed objects in varying sizes, forms, and locations.

  • 2 authors
·
Jan 15, 2025 1

Geometry Meets Vision: Revisiting Pretrained Semantics in Distilled Fields

Semantic distillation in radiance fields has spurred significant advances in open-vocabulary robot policies, e.g., in manipulation and navigation, founded on pretrained semantics from large vision models. While prior work has demonstrated the effectiveness of visual-only semantic features (e.g., DINO and CLIP) in Gaussian Splatting and neural radiance fields, the potential benefit of geometry-grounding in distilled fields remains an open question. In principle, visual-geometry features seem very promising for spatial tasks such as pose estimation, prompting the question: Do geometry-grounded semantic features offer an edge in distilled fields? Specifically, we ask three critical questions: First, does spatial-grounding produce higher-fidelity geometry-aware semantic features? We find that image features from geometry-grounded backbones contain finer structural details compared to their counterparts. Secondly, does geometry-grounding improve semantic object localization? We observe no significant difference in this task. Thirdly, does geometry-grounding enable higher-accuracy radiance field inversion? Given the limitations of prior work and their lack of semantics integration, we propose a novel framework SPINE for inverting radiance fields without an initial guess, consisting of two core components: coarse inversion using distilled semantics, and fine inversion using photometric-based optimization. Surprisingly, we find that the pose estimation accuracy decreases with geometry-grounded features. Our results suggest that visual-only features offer greater versatility for a broader range of downstream tasks, although geometry-grounded features contain more geometric detail. Notably, our findings underscore the necessity of future research on effective strategies for geometry-grounding that augment the versatility and performance of pretrained semantic features.

  • 3 authors
·
Oct 3, 2025

Vision Language Models are In-Context Value Learners

Predicting temporal progress from visual trajectories is important for intelligent robots that can learn, adapt, and improve. However, learning such progress estimator, or temporal value function, across different tasks and domains requires both a large amount of diverse data and methods which can scale and generalize. To address these challenges, we present Generative Value Learning (\GVL), a universal value function estimator that leverages the world knowledge embedded in vision-language models (VLMs) to predict task progress. Naively asking a VLM to predict values for a video sequence performs poorly due to the strong temporal correlation between successive frames. Instead, GVL poses value estimation as a temporal ordering problem over shuffled video frames; this seemingly more challenging task encourages VLMs to more fully exploit their underlying semantic and temporal grounding capabilities to differentiate frames based on their perceived task progress, consequently producing significantly better value predictions. Without any robot or task specific training, GVL can in-context zero-shot and few-shot predict effective values for more than 300 distinct real-world tasks across diverse robot platforms, including challenging bimanual manipulation tasks. Furthermore, we demonstrate that GVL permits flexible multi-modal in-context learning via examples from heterogeneous tasks and embodiments, such as human videos. The generality of GVL enables various downstream applications pertinent to visuomotor policy learning, including dataset filtering, success detection, and advantage-weighted regression -- all without any model training or finetuning.

  • 18 authors
·
Nov 7, 2024

Distilling Coarse-to-Fine Semantic Matching Knowledge for Weakly Supervised 3D Visual Grounding

3D visual grounding involves finding a target object in a 3D scene that corresponds to a given sentence query. Although many approaches have been proposed and achieved impressive performance, they all require dense object-sentence pair annotations in 3D point clouds, which are both time-consuming and expensive. To address the problem that fine-grained annotated data is difficult to obtain, we propose to leverage weakly supervised annotations to learn the 3D visual grounding model, i.e., only coarse scene-sentence correspondences are used to learn object-sentence links. To accomplish this, we design a novel semantic matching model that analyzes the semantic similarity between object proposals and sentences in a coarse-to-fine manner. Specifically, we first extract object proposals and coarsely select the top-K candidates based on feature and class similarity matrices. Next, we reconstruct the masked keywords of the sentence using each candidate one by one, and the reconstructed accuracy finely reflects the semantic similarity of each candidate to the query. Additionally, we distill the coarse-to-fine semantic matching knowledge into a typical two-stage 3D visual grounding model, which reduces inference costs and improves performance by taking full advantage of the well-studied structure of the existing architectures. We conduct extensive experiments on ScanRefer, Nr3D, and Sr3D, which demonstrate the effectiveness of our proposed method.

  • 8 authors
·
Jul 18, 2023

Dense Object Grounding in 3D Scenes

Localizing objects in 3D scenes according to the semantics of a given natural language is a fundamental yet important task in the field of multimedia understanding, which benefits various real-world applications such as robotics and autonomous driving. However, the majority of existing 3D object grounding methods are restricted to a single-sentence input describing an individual object, which cannot comprehend and reason more contextualized descriptions of multiple objects in more practical 3D cases. To this end, we introduce a new challenging task, called 3D Dense Object Grounding (3D DOG), to jointly localize multiple objects described in a more complicated paragraph rather than a single sentence. Instead of naively localizing each sentence-guided object independently, we found that dense objects described in the same paragraph are often semantically related and spatially located in a focused region of the 3D scene. To explore such semantic and spatial relationships of densely referred objects for more accurate localization, we propose a novel Stacked Transformer based framework for 3D DOG, named 3DOGSFormer. Specifically, we first devise a contextual query-driven local transformer decoder to generate initial grounding proposals for each target object. Then, we employ a proposal-guided global transformer decoder that exploits the local object features to learn their correlation for further refining initial grounding proposals. Extensive experiments on three challenging benchmarks (Nr3D, Sr3D, and ScanRefer) show that our proposed 3DOGSFormer outperforms state-of-the-art 3D single-object grounding methods and their dense-object variants by significant margins.

  • 3 authors
·
Sep 5, 2023

Grounding Language Model with Chunking-Free In-Context Retrieval

This paper presents a novel Chunking-Free In-Context (CFIC) retrieval approach, specifically tailored for Retrieval-Augmented Generation (RAG) systems. Traditional RAG systems often struggle with grounding responses using precise evidence text due to the challenges of processing lengthy documents and filtering out irrelevant content. Commonly employed solutions, such as document chunking and adapting language models to handle longer contexts, have their limitations. These methods either disrupt the semantic coherence of the text or fail to effectively address the issues of noise and inaccuracy in evidence retrieval. CFIC addresses these challenges by circumventing the conventional chunking process. It utilizes the encoded hidden states of documents for in-context retrieval, employing auto-aggressive decoding to accurately identify the specific evidence text required for user queries, eliminating the need for chunking. CFIC is further enhanced by incorporating two decoding strategies, namely Constrained Sentence Prefix Decoding and Skip Decoding. These strategies not only improve the efficiency of the retrieval process but also ensure that the fidelity of the generated grounding text evidence is maintained. Our evaluations of CFIC on a range of open QA datasets demonstrate its superiority in retrieving relevant and accurate evidence, offering a significant improvement over traditional methods. By doing away with the need for document chunking, CFIC presents a more streamlined, effective, and efficient retrieval solution, making it a valuable advancement in the field of RAG systems.

  • 5 authors
·
Feb 15, 2024

InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization

The emergence of Multimodal Large Language Models (MLLMs) has propelled the development of autonomous agents that operate on Graphical User Interfaces (GUIs) using pure visual input. A fundamental challenge is robustly grounding natural language instructions. This requires a precise spatial alignment, which accurately locates the coordinates of each element, and, more critically, a correct semantic alignment, which matches the instructions to the functionally appropriate UI element. Although Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be effective at improving spatial alignment for these MLLMs, we find that inefficient exploration bottlenecks semantic alignment, which prevent models from learning difficult semantic associations. To address this exploration problem, we present Adaptive Exploration Policy Optimization (AEPO), a new policy optimization framework. AEPO employs a multi-answer generation strategy to enforce broader exploration, which is then guided by a theoretically grounded Adaptive Exploration Reward (AER) function derived from first principles of efficiency eta=U/C. Our AEPO-trained models, InfiGUI-G1-3B and InfiGUI-G1-7B, establish new state-of-the-art results across multiple challenging GUI grounding benchmarks, achieving significant relative improvements of up to 9.0% against the naive RLVR baseline on benchmarks designed to test generalization and semantic understanding. Resources are available at https://github.com/InfiXAI/InfiGUI-G1.

  • 13 authors
·
Aug 7, 2025 2

Temporal Grounding as a Learning Signal for Referring Video Object Segmentation

Referring Video Object Segmentation (RVOS) aims to segment and track objects in videos based on natural language expressions, requiring precise alignment between visual content and textual queries. However, existing methods often suffer from semantic misalignment, largely due to indiscriminate frame sampling and supervision of all visible objects during training -- regardless of their actual relevance to the expression. We identify the core problem as the absence of an explicit temporal learning signal in conventional training paradigms. To address this, we introduce MeViS-M, a dataset built upon the challenging MeViS benchmark, where we manually annotate temporal spans when each object is referred to by the expression. These annotations provide a direct, semantically grounded supervision signal that was previously missing. To leverage this signal, we propose Temporally Grounded Learning (TGL), a novel learning framework that directly incorporates temporal grounding into the training process. Within this frame- work, we introduce two key strategies. First, Moment-guided Dual-path Propagation (MDP) improves both grounding and tracking by decoupling language-guided segmentation for relevant moments from language-agnostic propagation for others. Second, Object-level Selective Supervision (OSS) supervises only the objects temporally aligned with the expression in each training clip, thereby reducing semantic noise and reinforcing language-conditioned learning. Extensive experiments demonstrate that our TGL framework effectively leverages temporal signal to establish a new state-of-the-art on the challenging MeViS benchmark. We will make our code and the MeViS-M dataset publicly available.

  • 12 authors
·
Aug 16, 2025

IRef-VLA: A Benchmark for Interactive Referential Grounding with Imperfect Language in 3D Scenes

With the recent rise of large language models, vision-language models, and other general foundation models, there is growing potential for multimodal, multi-task robotics that can operate in diverse environments given natural language input. One such application is indoor navigation using natural language instructions. However, despite recent progress, this problem remains challenging due to the 3D spatial reasoning and semantic understanding required. Additionally, the language used may be imperfect or misaligned with the scene, further complicating the task. To address this challenge, we curate a benchmark dataset, IRef-VLA, for Interactive Referential Vision and Language-guided Action in 3D Scenes with imperfect references. IRef-VLA is the largest real-world dataset for the referential grounding task, consisting of over 11.5K scanned 3D rooms from existing datasets, 7.6M heuristically generated semantic relations, and 4.7M referential statements. Our dataset also contains semantic object and room annotations, scene graphs, navigable free space annotations, and is augmented with statements where the language has imperfections or ambiguities. We verify the generalizability of our dataset by evaluating with state-of-the-art models to obtain a performance baseline and also develop a graph-search baseline to demonstrate the performance bound and generation of alternatives using scene-graph knowledge. With this benchmark, we aim to provide a resource for 3D scene understanding that aids the development of robust, interactive navigation systems. The dataset and all source code is publicly released at https://github.com/HaochenZ11/IRef-VLA.

  • 5 authors
·
Mar 20, 2025

Towards Emergent Language Symbolic Semantic Segmentation and Model Interpretability

Recent advances in methods focused on the grounding problem have resulted in techniques that can be used to construct a symbolic language associated with a specific domain. Inspired by how humans communicate complex ideas through language, we developed a generalized Symbolic Semantic (S^2) framework for interpretable segmentation. Unlike adversarial models (e.g., GANs), we explicitly model cooperation between two agents, a Sender and a Receiver, that must cooperate to achieve a common goal. The Sender receives information from a high layer of a segmentation network and generates a symbolic sentence derived from a categorical distribution. The Receiver obtains the symbolic sentences and co-generates the segmentation mask. In order for the model to converge, the Sender and Receiver must learn to communicate using a private language. We apply our architecture to segment tumors in the TCGA dataset. A UNet-like architecture is used to generate input to the Sender network which produces a symbolic sentence, and a Receiver network co-generates the segmentation mask based on the sentence. Our Segmentation framework achieved similar or better performance compared with state-of-the-art segmentation methods. In addition, our results suggest direct interpretation of the symbolic sentences to discriminate between normal and tumor tissue, tumor morphology, and other image characteristics.

  • 5 authors
·
Jul 18, 2020

Hierarchical Contextual Grounding LVLM: Enhancing Fine-Grained Visual-Language Understanding with Robust Grounding

Large Language Models (LLMs) and Vision-Language Large Models (LVLMs) have achieved remarkable progress in natural language processing and multimodal understanding. Despite their impressive generalization capabilities, current LVLMs often exhibit insufficient robustness, proneness to hallucination, and reasoning errors in complex real-world scenarios, particularly when precise image region localization and fine-grained visual reasoning are required. To address these limitations, we propose the Hierarchical Contextual Grounding LVLM (HCG-LVLM), a novel architecture that mimics human coarse-to-fine cognitive processing. HCG-LVLM employs a two-layered approach: a Global Contextual Perception layer for initial broad understanding and a Fine-grained Local Grounding layer. The latter incorporates a Local Detail Enhancement Module to extract high-resolution features and a Semantic Consistency Validator to ensure accurate, hallucination-free visual-language alignment. Through an adaptive fusion mechanism, information from both layers is integrated for robust and precise outputs. Extensive experiments on challenging datasets, including GQA, A-OKVQA for fine-grained VQA, and RefCOCO/+/g for Referring Expression Comprehension, demonstrate that HCG-LVLM consistently outperforms state-of-the-art models such as Flamingo, BLIP-2, and MiniGPT-4. Our model achieves superior accuracy and significantly reduces hallucination, validating the effectiveness of its hierarchical design in enhancing fine-grained visual-language understanding and precise grounding capabilities.

  • 5 authors
·
Aug 23, 2025

SAGE: Bridging Semantic and Actionable Parts for GEneralizable Manipulation of Articulated Objects

To interact with daily-life articulated objects of diverse structures and functionalities, understanding the object parts plays a central role in both user instruction comprehension and task execution. However, the possible discordance between the semantic meaning and physics functionalities of the parts poses a challenge for designing a general system. To address this problem, we propose SAGE, a novel framework that bridges semantic and actionable parts of articulated objects to achieve generalizable manipulation under natural language instructions. More concretely, given an articulated object, we first observe all the semantic parts on it, conditioned on which an instruction interpreter proposes possible action programs that concretize the natural language instruction. Then, a part-grounding module maps the semantic parts into so-called Generalizable Actionable Parts (GAParts), which inherently carry information about part motion. End-effector trajectories are predicted on the GAParts, which, together with the action program, form an executable policy. Additionally, an interactive feedback module is incorporated to respond to failures, which closes the loop and increases the robustness of the overall framework. Key to the success of our framework is the joint proposal and knowledge fusion between a large vision-language model (VLM) and a small domain-specific model for both context comprehension and part perception, with the former providing general intuitions and the latter serving as expert facts. Both simulation and real-robot experiments show our effectiveness in handling a large variety of articulated objects with diverse language-instructed goals.

  • 6 authors
·
Dec 3, 2023

Grounding DINO 1.5: Advance the "Edge" of Open-Set Object Detection

This paper introduces Grounding DINO 1.5, a suite of advanced open-set object detection models developed by IDEA Research, which aims to advance the "Edge" of open-set object detection. The suite encompasses two models: Grounding DINO 1.5 Pro, a high-performance model designed for stronger generalization capability across a wide range of scenarios, and Grounding DINO 1.5 Edge, an efficient model optimized for faster speed demanded in many applications requiring edge deployment. The Grounding DINO 1.5 Pro model advances its predecessor by scaling up the model architecture, integrating an enhanced vision backbone, and expanding the training dataset to over 20 million images with grounding annotations, thereby achieving a richer semantic understanding. The Grounding DINO 1.5 Edge model, while designed for efficiency with reduced feature scales, maintains robust detection capabilities by being trained on the same comprehensive dataset. Empirical results demonstrate the effectiveness of Grounding DINO 1.5, with the Grounding DINO 1.5 Pro model attaining a 54.3 AP on the COCO detection benchmark and a 55.7 AP on the LVIS-minival zero-shot transfer benchmark, setting new records for open-set object detection. Furthermore, the Grounding DINO 1.5 Edge model, when optimized with TensorRT, achieves a speed of 75.2 FPS while attaining a zero-shot performance of 36.2 AP on the LVIS-minival benchmark, making it more suitable for edge computing scenarios. Model examples and demos with API will be released at https://github.com/IDEA-Research/Grounding-DINO-1.5-API

  • 16 authors
·
May 16, 2024 2

VIMI: Grounding Video Generation through Multi-modal Instruction

Existing text-to-video diffusion models rely solely on text-only encoders for their pretraining. This limitation stems from the absence of large-scale multimodal prompt video datasets, resulting in a lack of visual grounding and restricting their versatility and application in multimodal integration. To address this, we construct a large-scale multimodal prompt dataset by employing retrieval methods to pair in-context examples with the given text prompts and then utilize a two-stage training strategy to enable diverse video generation tasks within the same model. In the first stage, we propose a multimodal conditional video generation framework for pretraining on these augmented datasets, establishing a foundational model for grounded video generation. Secondly, we finetune the model from the first stage on three video generation tasks, incorporating multi-modal instructions. This process further refines the model's ability to handle diverse inputs and tasks, ensuring seamless integration of multi-modal information. After this two-stage train-ing process, VIMI demonstrates multimodal understanding capabilities, producing contextually rich and personalized videos grounded in the provided inputs, as shown in Figure 1. Compared to previous visual grounded video generation methods, VIMI can synthesize consistent and temporally coherent videos with large motion while retaining the semantic control. Lastly, VIMI also achieves state-of-the-art text-to-video generation results on UCF101 benchmark.

  • 8 authors
·
Jul 8, 2024 1

Self-driven Grounding: Large Language Model Agents with Automatical Language-aligned Skill Learning

Large language models (LLMs) show their powerful automatic reasoning and planning capability with a wealth of semantic knowledge about the human world. However, the grounding problem still hinders the applications of LLMs in the real-world environment. Existing studies try to fine-tune the LLM or utilize pre-defined behavior APIs to bridge the LLMs and the environment, which not only costs huge human efforts to customize for every single task but also weakens the generality strengths of LLMs. To autonomously ground the LLM onto the environment, we proposed the Self-Driven Grounding (SDG) framework to automatically and progressively ground the LLM with self-driven skill learning. SDG first employs the LLM to propose the hypothesis of sub-goals to achieve tasks and then verify the feasibility of the hypothesis via interacting with the underlying environment. Once verified, SDG can then learn generalized skills with the guidance of these successfully grounded subgoals. These skills can be further utilized to accomplish more complex tasks which fail to pass the verification phase. Verified in the famous instruction following task set-BabyAI, SDG achieves comparable performance in the most challenging tasks compared with imitation learning methods that cost millions of demonstrations, proving the effectiveness of learned skills and showing the feasibility and efficiency of our framework.

  • 12 authors
·
Sep 4, 2023

Improving Generalized Visual Grounding with Instance-aware Joint Learning

Generalized visual grounding tasks, including Generalized Referring Expression Comprehension (GREC) and Segmentation (GRES), extend the classical visual grounding paradigm by accommodating multi-target and non-target scenarios. Specifically, GREC focuses on accurately identifying all referential objects at the coarse bounding box level, while GRES aims for achieve fine-grained pixel-level perception. However, existing approaches typically treat these tasks independently, overlooking the benefits of jointly training GREC and GRES to ensure consistent multi-granularity predictions and streamline the overall process. Moreover, current methods often treat GRES as a semantic segmentation task, neglecting the crucial role of instance-aware capabilities and the necessity of ensuring consistent predictions between instance-level boxes and masks. To address these limitations, we propose InstanceVG, a multi-task generalized visual grounding framework equipped with instance-aware capabilities, which leverages instance queries to unify the joint and consistency predictions of instance-level boxes and masks. To the best of our knowledge, InstanceVG is the first framework to simultaneously tackle both GREC and GRES while incorporating instance-aware capabilities into generalized visual grounding. To instantiate the framework, we assign each instance query a prior reference point, which also serves as an additional basis for target matching. This design facilitates consistent predictions of points, boxes, and masks for the same instance. Extensive experiments obtained on ten datasets across four tasks demonstrate that InstanceVG achieves state-of-the-art performance, significantly surpassing the existing methods in various evaluation metrics. The code and model will be publicly available at https://github.com/Dmmm1997/InstanceVG.

  • 7 authors
·
Sep 17, 2025

LeanRAG: Knowledge-Graph-Based Generation with Semantic Aggregation and Hierarchical Retrieval

Retrieval-Augmented Generation (RAG) plays a crucial role in grounding Large Language Models by leveraging external knowledge, whereas the effectiveness is often compromised by the retrieval of contextually flawed or incomplete information. To address this, knowledge graph-based RAG methods have evolved towards hierarchical structures, organizing knowledge into multi-level summaries. However, these approaches still suffer from two critical, unaddressed challenges: high-level conceptual summaries exist as disconnected ``semantic islands'', lacking the explicit relations needed for cross-community reasoning; and the retrieval process itself remains structurally unaware, often degenerating into an inefficient flat search that fails to exploit the graph's rich topology. To overcome these limitations, we introduce LeanRAG, a framework that features a deeply collaborative design combining knowledge aggregation and retrieval strategies. LeanRAG first employs a novel semantic aggregation algorithm that forms entity clusters and constructs new explicit relations among aggregation-level summaries, creating a fully navigable semantic network. Then, a bottom-up, structure-guided retrieval strategy anchors queries to the most relevant fine-grained entities and then systematically traverses the graph's semantic pathways to gather concise yet contextually comprehensive evidence sets. The LeanRAG can mitigate the substantial overhead associated with path retrieval on graphs and minimizes redundant information retrieval. Extensive experiments on four challenging QA benchmarks with different domains demonstrate that LeanRAG significantly outperforming existing methods in response quality while reducing 46\% retrieval redundancy. Code is available at: https://github.com/RaZzzyz/LeanRAG

  • 8 authors
·
Aug 14, 2025

MedSG-Bench: A Benchmark for Medical Image Sequences Grounding

Visual grounding is essential for precise perception and reasoning in multimodal large language models (MLLMs), especially in medical imaging domains. While existing medical visual grounding benchmarks primarily focus on single-image scenarios, real-world clinical applications often involve sequential images, where accurate lesion localization across different modalities and temporal tracking of disease progression (e.g., pre- vs. post-treatment comparison) require fine-grained cross-image semantic alignment and context-aware reasoning. To remedy the underrepresentation of image sequences in existing medical visual grounding benchmarks, we propose MedSG-Bench, the first benchmark tailored for Medical Image Sequences Grounding. It comprises eight VQA-style tasks, formulated into two paradigms of the grounding tasks, including 1) Image Difference Grounding, which focuses on detecting change regions across images, and 2) Image Consistency Grounding, which emphasizes detection of consistent or shared semantics across sequential images. MedSG-Bench covers 76 public datasets, 10 medical imaging modalities, and a wide spectrum of anatomical structures and diseases, totaling 9,630 question-answer pairs. We benchmark both general-purpose MLLMs (e.g., Qwen2.5-VL) and medical-domain specialized MLLMs (e.g., HuatuoGPT-vision), observing that even the advanced models exhibit substantial limitations in medical sequential grounding tasks. To advance this field, we construct MedSG-188K, a large-scale instruction-tuning dataset tailored for sequential visual grounding, and further develop MedSeq-Grounder, an MLLM designed to facilitate future research on fine-grained understanding across medical sequential images. The benchmark, dataset, and model are available at https://huggingface.co/MedSG-Bench

  • 7 authors
·
May 17, 2025

G2L: Semantically Aligned and Uniform Video Grounding via Geodesic and Game Theory

The recent video grounding works attempt to introduce vanilla contrastive learning into video grounding. However, we claim that this naive solution is suboptimal. Contrastive learning requires two key properties: (1) alignment of features of similar samples, and (2) uniformity of the induced distribution of the normalized features on the hypersphere. Due to two annoying issues in video grounding: (1) the co-existence of some visual entities in both ground truth and other moments, \ie semantic overlapping; (2) only a few moments in the video are annotated, \ie sparse annotation dilemma, vanilla contrastive learning is unable to model the correlations between temporally distant moments and learned inconsistent video representations. Both characteristics lead to vanilla contrastive learning being unsuitable for video grounding. In this paper, we introduce Geodesic and Game Localization (G2L), a semantically aligned and uniform video grounding framework via geodesic and game theory. We quantify the correlations among moments leveraging the geodesic distance that guides the model to learn the correct cross-modal representations. Furthermore, from the novel perspective of game theory, we propose semantic Shapley interaction based on geodesic distance sampling to learn fine-grained semantic alignment in similar moments. Experiments on three benchmarks demonstrate the effectiveness of our method.

  • 6 authors
·
Jul 26, 2023

GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents

One of the principal challenges in building VLM-powered GUI agents is visual grounding, i.e., localizing the appropriate screen region for action execution based on both the visual content and the textual plans. Most existing work formulates this as a text-based coordinate generation task. However, these approaches suffer from several limitations: weak spatial-semantic alignment, inability to handle ambiguous supervision targets, and a mismatch between the dense nature of screen coordinates and the coarse, patch-level granularity of visual features extracted by models like Vision Transformers. In this paper, we propose GUI-Actor, a VLM-based method for coordinate-free GUI grounding. At its core, GUI-Actor introduces an attention-based action head that learns to align a dedicated <ACTOR> token with all relevant visual patch tokens, enabling the model to propose one or more action regions in a single forward pass. In line with this, we further design a grounding verifier to evaluate and select the most plausible action region from the candidates proposed for action execution. Extensive experiments show that GUI-Actor outperforms prior state-of-the-art methods on multiple GUI action grounding benchmarks, with improved generalization to unseen screen resolutions and layouts. Notably, GUI-Actor-7B even surpasses UI-TARS-72B (38.1) on ScreenSpot-Pro, achieving scores of 40.7 with Qwen2-VL and 44.6 with Qwen2.5-VL as backbones. Furthermore, by incorporating the verifier, we find that fine-tuning only the newly introduced action head (~100M parameters for 7B model) while keeping the VLM backbone frozen is sufficient to achieve performance comparable to previous state-of-the-art models, highlighting that GUI-Actor can endow the underlying VLM with effective grounding capabilities without compromising its general-purpose strengths.

  • 18 authors
·
Jun 3, 2025 3

Reasoning in Space via Grounding in the World

In this paper, we claim that 3D visual grounding is the cornerstone of spatial reasoning and introduce the Grounded-Spatial Reasoner (GS-Reasoner) to explore the effective spatial representations that bridge the gap between them. Existing 3D LLMs suffer from the absence of a unified 3D representation capable of jointly capturing semantic and geometric information. This deficiency is manifested either in poor performance on grounding or in an excessive reliance on external modules, ultimately hindering the seamless integration of grounding and spatial reasoning. To address this, we propose a simple yet effective dual-path pooling mechanism that tightly aligns geometric features with both semantic and positional cues, constructing a unified image patch-based 3D representation that encapsulates all essential information without increasing the number of input tokens. Leveraging this holistic representation, GS-Reasoner is the first 3D LLM that achieves autoregressive grounding entirely without external modules while delivering performance comparable to state-of-the-art models, establishing a unified and self-contained framework for 3D spatial reasoning. To further bridge grounding and spatial reasoning, we introduce the Grounded Chain-of-Thought (GCoT) dataset. This dataset is meticulously curated to include both 3D bounding box annotations for objects referenced in reasoning questions and step-by-step reasoning paths that integrate grounding as a core component of the problem-solving process. Extensive experiments demonstrate that GS-Reasoner achieves impressive results on 3D visual grounding, which in turn significantly enhances its spatial reasoning capabilities, leading to state-of-the-art performance.

  • 6 authors
·
Oct 15, 2025 2

IAG: Input-aware Backdoor Attack on VLMs for Visual Grounding

Vision-language models (VLMs) have shown significant advancements in tasks such as visual grounding, where they localize specific objects in images based on natural language queries and images. However, security issues in visual grounding tasks for VLMs remain underexplored, especially in the context of backdoor attacks. In this paper, we introduce a novel input-aware backdoor attack method, IAG, designed to manipulate the grounding behavior of VLMs. This attack forces the model to ground a specific target object in the input image, regardless of the user's query. We propose an adaptive trigger generator that embeds the semantic information of the attack target's description into the original image using a text-conditional U-Net, thereby overcoming the open-vocabulary attack challenge. To ensure the attack's stealthiness, we utilize a reconstruction loss to minimize visual discrepancies between poisoned and clean images. Additionally, we introduce a unified method for generating attack data. IAG is evaluated theoretically and empirically, demonstrating its feasibility and effectiveness. Notably, our [email protected] on InternVL-2.5-8B reaches over 65\% on various testing sets. IAG also shows promising potential on manipulating Ferret-7B and LlaVA-1.5-7B with very little accuracy decrease on clean samples. Extensive specific experiments, such as ablation study and potential defense, also indicate the robustness and transferability of our attack.

  • 3 authors
·
Aug 12, 2025 2

Knowledge to Sight: Reasoning over Visual Attributes via Knowledge Decomposition for Abnormality Grounding

In this work, we address the problem of grounding abnormalities in medical images, where the goal is to localize clinical findings based on textual descriptions. While generalist Vision-Language Models (VLMs) excel in natural grounding tasks, they often struggle in the medical domain due to rare, compositional, and domain-specific terms that are poorly aligned with visual patterns. Specialized medical VLMs address this challenge via large-scale domain pretraining, but at the cost of substantial annotation and computational resources. To overcome these limitations, we propose Knowledge to Sight (K2Sight), a framework that introduces structured semantic supervision by decomposing clinical concepts into interpretable visual attributes, such as shape, density, and anatomical location. These attributes are distilled from domain ontologies and encoded into concise instruction-style prompts, which guide region-text alignment during training. Unlike conventional report-level supervision, our approach explicitly bridges domain knowledge and spatial structure, enabling data-efficient training of compact models. We train compact models with 0.23B and 2B parameters using only 1.5\% of the data required by state-of-the-art medical VLMs. Despite their small size and limited training data, these models achieve performance on par with or better than 7B+ medical VLMs, with up to 9.82\% improvement in mAP_{50}. Code and models: https://lijunrio.github.io/K2Sight/{SOTAPink{https://lijunrio.github.io/K2Sight/}}.

  • 7 authors
·
Aug 6, 2025

Uncertainty-quantified Rollout Policy Adaptation for Unlabelled Cross-domain Temporal Grounding

Video Temporal Grounding (TG) aims to temporally locate video segments matching a natural language description (a query) in a long video. While Vision-Language Models (VLMs) are effective at holistic semantic matching, they often struggle with fine-grained temporal localisation. Recently, Group Relative Policy Optimisation (GRPO) reformulates the inference process as a reinforcement learning task, enabling fine-grained grounding and achieving strong in-domain performance. However, GRPO relies on labelled data, making it unsuitable in unlabelled domains. Moreover, because videos are large and expensive to store and process, performing full-scale adaptation introduces prohibitive latency and computational overhead, making it impractical for real-time deployment. To overcome both problems, we introduce a Data-Efficient Unlabelled Cross-domain Temporal Grounding method, from which a model is first trained on a labelled source domain, then adapted to a target domain using only a small number of unlabelled videos from the target domain. This approach eliminates the need for target annotation and keeps both computational and storage overhead low enough to run in real time. Specifically, we introduce. Uncertainty-quantified Rollout Policy Adaptation (URPA) for cross-domain knowledge transfer in learning video temporal grounding without target labels. URPA generates multiple candidate predictions using GRPO rollouts, averages them to form a pseudo label, and estimates confidence from the variance across these rollouts. This confidence then weights the training rewards, guiding the model to focus on reliable supervision. Experiments on three datasets across six cross-domain settings show that URPA generalises well using only a few unlabelled target videos. Codes will be released once published.

  • 7 authors
·
Aug 8, 2025

ObscuraCoder: Powering Efficient Code LM Pre-Training Via Obfuscation Grounding

Language models (LMs) have become a staple of the code-writing toolbox. Their pre-training recipe has, however, remained stagnant over recent years, barring the occasional changes in data sourcing and filtering strategies. In particular, research exploring modifications to Code-LMs' pre-training objectives, geared towards improving data efficiency and better disentangling between syntax and semantics, has been noticeably sparse, especially compared with corresponding efforts in natural language LMs. In this work, we examine grounding on obfuscated code as a means of helping Code-LMs look beyond the surface-form syntax and enhance their pre-training sample efficiency. To this end, we compile ObscuraX, a dataset of approximately 55M source and obfuscated code pairs in seven languages. Subsequently, we pre-train ObscuraCoder models, ranging in size from 255M to 2.8B parameters, on a 272B-token corpus that includes ObscuraX and demonstrate that our obfuscation-based pre-training recipe leads to consistent improvements in Code-LMs' abilities compared to both vanilla autoregressive pre-training as well as existing de-obfuscation (DOBF) objectives. ObscuraCoder demonstrates sizeable gains across multiple tests of syntactic and semantic code understanding, along with improved capabilities in multilingual code completion, multilingual code commit summarization, and multi-purpose library-oriented code generation.

  • 5 authors
·
Mar 27, 2025

Reinforced UI Instruction Grounding: Towards a Generic UI Task Automation API

Recent popularity of Large Language Models (LLMs) has opened countless possibilities in automating numerous AI tasks by connecting LLMs to various domain-specific models or APIs, where LLMs serve as dispatchers while domain-specific models or APIs are action executors. Despite the vast numbers of domain-specific models/APIs, they still struggle to comprehensively cover super diverse automation demands in the interaction between human and User Interfaces (UIs). In this work, we build a multimodal model to ground natural language instructions in given UI screenshots as a generic UI task automation executor. This metadata-free grounding model, consisting of a visual encoder and a language decoder, is first pretrained on well studied document understanding tasks and then learns to decode spatial information from UI screenshots in a promptable way. To facilitate the exploitation of image-to-text pretrained knowledge, we follow the pixel-to-sequence paradigm to predict geometric coordinates in a sequence of tokens using a language decoder. We further propose an innovative Reinforcement Learning (RL) based algorithm to supervise the tokens in such sequence jointly with visually semantic metrics, which effectively strengthens the spatial decoding capability of the pixel-to-sequence paradigm. Extensive experiments demonstrate our proposed reinforced UI instruction grounding model outperforms the state-of-the-art methods by a clear margin and shows the potential as a generic UI task automation API.

  • 4 authors
·
Oct 7, 2023

KITE: Keypoint-Conditioned Policies for Semantic Manipulation

While natural language offers a convenient shared interface for humans and robots, enabling robots to interpret and follow language commands remains a longstanding challenge in manipulation. A crucial step to realizing a performant instruction-following robot is achieving semantic manipulation, where a robot interprets language at different specificities, from high-level instructions like "Pick up the stuffed animal" to more detailed inputs like "Grab the left ear of the elephant." To tackle this, we propose Keypoints + Instructions to Execution (KITE), a two-step framework for semantic manipulation which attends to both scene semantics (distinguishing between different objects in a visual scene) and object semantics (precisely localizing different parts within an object instance). KITE first grounds an input instruction in a visual scene through 2D image keypoints, providing a highly accurate object-centric bias for downstream action inference. Provided an RGB-D scene observation, KITE then executes a learned keypoint-conditioned skill to carry out the instruction. The combined precision of keypoints and parameterized skills enables fine-grained manipulation with generalization to scene and object variations. Empirically, we demonstrate KITE in 3 real-world environments: long-horizon 6-DoF tabletop manipulation, semantic grasping, and a high-precision coffee-making task. In these settings, KITE achieves a 75%, 70%, and 71% overall success rate for instruction-following, respectively. KITE outperforms frameworks that opt for pre-trained visual language models over keypoint-based grounding, or omit skills in favor of end-to-end visuomotor control, all while being trained from fewer or comparable amounts of demonstrations. Supplementary material, datasets, code, and videos can be found on our website: http://tinyurl.com/kite-site.

  • 4 authors
·
Jun 28, 2023

Joint Visual Grounding and Tracking with Natural Language Specification

Tracking by natural language specification aims to locate the referred target in a sequence based on the natural language description. Existing algorithms solve this issue in two steps, visual grounding and tracking, and accordingly deploy the separated grounding model and tracking model to implement these two steps, respectively. Such a separated framework overlooks the link between visual grounding and tracking, which is that the natural language descriptions provide global semantic cues for localizing the target for both two steps. Besides, the separated framework can hardly be trained end-to-end. To handle these issues, we propose a joint visual grounding and tracking framework, which reformulates grounding and tracking as a unified task: localizing the referred target based on the given visual-language references. Specifically, we propose a multi-source relation modeling module to effectively build the relation between the visual-language references and the test image. In addition, we design a temporal modeling module to provide a temporal clue with the guidance of the global semantic information for our model, which effectively improves the adaptability to the appearance variations of the target. Extensive experimental results on TNL2K, LaSOT, OTB99, and RefCOCOg demonstrate that our method performs favorably against state-of-the-art algorithms for both tracking and grounding. Code is available at https://github.com/lizhou-cs/JointNLT.

  • 4 authors
·
Mar 21, 2023

A Bi-Step Grounding Paradigm for Large Language Models in Recommendation Systems

As the focus on Large Language Models (LLMs) in the field of recommendation intensifies, the optimization of LLMs for recommendation purposes (referred to as LLM4Rec) assumes a crucial role in augmenting their effectiveness in providing recommendations. However, existing approaches for LLM4Rec often assess performance using restricted sets of candidates, which may not accurately reflect the models' overall ranking capabilities. In this paper, our objective is to investigate the comprehensive ranking capacity of LLMs and propose a two-step grounding framework known as BIGRec (Bi-step Grounding Paradigm for Recommendation). It initially grounds LLMs to the recommendation space by fine-tuning them to generate meaningful tokens for items and subsequently identifies appropriate actual items that correspond to the generated tokens. By conducting extensive experiments on two datasets, we substantiate the superior performance, capacity for handling few-shot scenarios, and versatility across multiple domains exhibited by BIGRec. Furthermore, we observe that the marginal benefits derived from increasing the quantity of training samples are modest for BIGRec, implying that LLMs possess the limited capability to assimilate statistical information, such as popularity and collaborative filtering, due to their robust semantic priors. These findings also underline the efficacy of integrating diverse statistical information into the LLM4Rec framework, thereby pointing towards a potential avenue for future research. Our code and data are available at https://github.com/SAI990323/Grounding4Rec.

  • 9 authors
·
Aug 16, 2023

Do As I Can, Not As I Say: Grounding Language in Robotic Affordances

Large language models can encode a wealth of semantic knowledge about the world. Such knowledge could be extremely useful to robots aiming to act upon high-level, temporally extended instructions expressed in natural language. However, a significant weakness of language models is that they lack real-world experience, which makes it difficult to leverage them for decision making within a given embodiment. For example, asking a language model to describe how to clean a spill might result in a reasonable narrative, but it may not be applicable to a particular agent, such as a robot, that needs to perform this task in a particular environment. We propose to provide real-world grounding by means of pretrained skills, which are used to constrain the model to propose natural language actions that are both feasible and contextually appropriate. The robot can act as the language model's "hands and eyes," while the language model supplies high-level semantic knowledge about the task. We show how low-level skills can be combined with large language models so that the language model provides high-level knowledge about the procedures for performing complex and temporally-extended instructions, while value functions associated with these skills provide the grounding necessary to connect this knowledge to a particular physical environment. We evaluate our method on a number of real-world robotic tasks, where we show the need for real-world grounding and that this approach is capable of completing long-horizon, abstract, natural language instructions on a mobile manipulator. The project's website and the video can be found at https://say-can.github.io/.

  • 45 authors
·
Apr 4, 2022

PropVG: End-to-End Proposal-Driven Visual Grounding with Multi-Granularity Discrimination

Recent advances in visual grounding have largely shifted away from traditional proposal-based two-stage frameworks due to their inefficiency and high computational complexity, favoring end-to-end direct reference paradigms. However, these methods rely exclusively on the referred target for supervision, overlooking the potential benefits of prominent prospective targets. Moreover, existing approaches often fail to incorporate multi-granularity discrimination, which is crucial for robust object identification in complex scenarios. To address these limitations, we propose PropVG, an end-to-end proposal-based framework that, to the best of our knowledge, is the first to seamlessly integrate foreground object proposal generation with referential object comprehension without requiring additional detectors. Furthermore, we introduce a Contrastive-based Refer Scoring (CRS) module, which employs contrastive learning at both sentence and word levels to enhance the capability in understanding and distinguishing referred objects. Additionally, we design a Multi-granularity Target Discrimination (MTD) module that fuses object- and semantic-level information to improve the recognition of absent targets. Extensive experiments on gRefCOCO (GREC/GRES), Ref-ZOM, R-RefCOCO, and RefCOCO (REC/RES) benchmarks demonstrate the effectiveness of PropVG. The codes and models are available at https://github.com/Dmmm1997/PropVG.

  • 7 authors
·
Sep 5, 2025

D3G: Exploring Gaussian Prior for Temporal Sentence Grounding with Glance Annotation

Temporal sentence grounding (TSG) aims to locate a specific moment from an untrimmed video with a given natural language query. Recently, weakly supervised methods still have a large performance gap compared to fully supervised ones, while the latter requires laborious timestamp annotations. In this study, we aim to reduce the annotation cost yet keep competitive performance for TSG task compared to fully supervised ones. To achieve this goal, we investigate a recently proposed glance-supervised temporal sentence grounding task, which requires only single frame annotation (referred to as glance annotation) for each query. Under this setup, we propose a Dynamic Gaussian prior based Grounding framework with Glance annotation (D3G), which consists of a Semantic Alignment Group Contrastive Learning module (SA-GCL) and a Dynamic Gaussian prior Adjustment module (DGA). Specifically, SA-GCL samples reliable positive moments from a 2D temporal map via jointly leveraging Gaussian prior and semantic consistency, which contributes to aligning the positive sentence-moment pairs in the joint embedding space. Moreover, to alleviate the annotation bias resulting from glance annotation and model complex queries consisting of multiple events, we propose the DGA module, which adjusts the distribution dynamically to approximate the ground truth of target moments. Extensive experiments on three challenging benchmarks verify the effectiveness of the proposed D3G. It outperforms the state-of-the-art weakly supervised methods by a large margin and narrows the performance gap compared to fully supervised methods. Code is available at https://github.com/solicucu/D3G.

  • 8 authors
·
Aug 8, 2023

Revisiting the Gold Standard: Grounding Summarization Evaluation with Robust Human Evaluation

Human evaluation is the foundation upon which the evaluation of both summarization systems and automatic metrics rests. However, existing human evaluation studies for summarization either exhibit a low inter-annotator agreement or have insufficient scale, and an in-depth analysis of human evaluation is lacking. Therefore, we address the shortcomings of existing summarization evaluation along the following axes: (1) We propose a modified summarization salience protocol, Atomic Content Units (ACUs), which is based on fine-grained semantic units and allows for a high inter-annotator agreement. (2) We curate the Robust Summarization Evaluation (RoSE) benchmark, a large human evaluation dataset consisting of 22,000 summary-level annotations over 28 top-performing systems on three datasets. (3) We conduct a comparative study of four human evaluation protocols, underscoring potential confounding factors in evaluation setups. (4) We evaluate 50 automatic metrics and their variants using the collected human annotations across evaluation protocols and demonstrate how our benchmark leads to more statistically stable and significant results. The metrics we benchmarked include recent methods based on large language models (LLMs), GPTScore and G-Eval. Furthermore, our findings have important implications for evaluating LLMs, as we show that LLMs adjusted by human feedback (e.g., GPT-3.5) may overfit unconstrained human evaluation, which is affected by the annotators' prior, input-agnostic preferences, calling for more robust, targeted evaluation methods.

  • 11 authors
·
Dec 15, 2022

V2P: From Background Suppression to Center Peaking for Robust GUI Grounding Task

Precise localization of GUI elements is crucial for the development of GUI agents. Traditional methods rely on bounding box or center-point regression, neglecting spatial interaction uncertainty and visual-semantic hierarchies. Recent methods incorporate attention mechanisms but still face two key issues: (1) ignoring processing background regions causes attention drift from the desired area, and (2) uniform labeling fails to distinguish between center and edges of the target UI element, leading to click imprecision. Inspired by how humans visually process and interact with GUI elements, we propose the Valley-to-Peak (V2P) method to address these issues. To mitigate background distractions, V2P introduces a suppression attention mechanism that minimizes the model's focus on irrelevant regions to highlight the intended region. For the issue of center-edge distinction, V2P applies a Fitts' Law-inspired approach by modeling GUI interactions as 2D Gaussian heatmaps where the weight gradually decreases from the center towards the edges. The weight distribution follows a Gaussian function, with the variance determined by the target's size. Consequently, V2P effectively isolates the target area and teaches the model to concentrate on the most essential point of the UI element. The model trained by V2P achieves the performance with 92.3% and 50.5% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro. Ablations further confirm each component's contribution, highlighting V2P's generalizability for precise GUI grounding tasks.

  • 6 authors
·
Aug 19, 2025

Compass-aligned Distributional Embeddings for Studying Semantic Differences across Corpora

Word2vec is one of the most used algorithms to generate word embeddings because of a good mix of efficiency, quality of the generated representations and cognitive grounding. However, word meaning is not static and depends on the context in which words are used. Differences in word meaning that depends on time, location, topic, and other factors, can be studied by analyzing embeddings generated from different corpora in collections that are representative of these factors. For example, language evolution can be studied using a collection of news articles published in different time periods. In this paper, we present a general framework to support cross-corpora language studies with word embeddings, where embeddings generated from different corpora can be compared to find correspondences and differences in meaning across the corpora. CADE is the core component of our framework and solves the key problem of aligning the embeddings generated from different corpora. In particular, we focus on providing solid evidence about the effectiveness, generality, and robustness of CADE. To this end, we conduct quantitative and qualitative experiments in different domains, from temporal word embeddings to language localization and topical analysis. The results of our experiments suggest that CADE achieves state-of-the-art or superior performance on tasks where several competing approaches are available, yet providing a general method that can be used in a variety of domains. Finally, our experiments shed light on the conditions under which the alignment is reliable, which substantially depends on the degree of cross-corpora vocabulary overlap.

  • 4 authors
·
Apr 13, 2020

Emo Pillars: Knowledge Distillation to Support Fine-Grained Context-Aware and Context-Less Emotion Classification

Most datasets for sentiment analysis lack context in which an opinion was expressed, often crucial for emotion understanding, and are mainly limited by a few emotion categories. Foundation large language models (LLMs) like GPT-4 suffer from over-predicting emotions and are too resource-intensive. We design an LLM-based data synthesis pipeline and leverage a large model, Mistral-7b, for the generation of training examples for more accessible, lightweight BERT-type encoder models. We focus on enlarging the semantic diversity of examples and propose grounding the generation into a corpus of narratives to produce non-repetitive story-character-centered utterances with unique contexts over 28 emotion classes. By running 700K inferences in 450 GPU hours, we contribute with the dataset of 100K contextual and also 300K context-less examples to cover both scenarios. We use it for fine-tuning pre-trained encoders, which results in several Emo Pillars models. We show that Emo Pillars models are highly adaptive to new domains when tuned to specific tasks such as GoEmotions, ISEAR, IEMOCAP, and EmoContext, reaching the SOTA performance on the first three. We also validate our dataset, conducting statistical analysis and human evaluation, and confirm the success of our measures in utterance diversification (although less for the neutral class) and context personalization, while pointing out the need for improved handling of out-of-taxonomy labels within the pipeline.

  • 1 authors
·
Apr 23, 2025

Reasoning to Attend: Try to Understand How <SEG> Token Works

Current Large Multimodal Models (LMMs) empowered visual grounding typically rely on <SEG> tokens as a text prompt to jointly optimize the vision-language model (e.g., LLaVA) and the downstream task-specific model (e.g., SAM). However, we observe that little research has looked into how it works.In this work, we first visualize the similarity maps, which are obtained by computing the semantic similarity between the <SEG> token and the image token embeddings derived from the last hidden layer in both the LLaVA encoder and SAM decoder. Intriguingly, we have found that a striking consistency holds in terms of activation responses in the similarity map, which reveals that what the <SEG> token contributes to is semantic similarity within image-text pairs. Specifically, the <SEG> token, a placeholder expanded in text vocabulary, extensively queries among individual tokenized image patches to match the semantics of an object from text to the paired image, while the Large Language Models (LLMs) are being fine-tuned. Upon the above findings, we present READ, which facilitates LMMs' resilient REAsoning capability of where to attenD under the guidance of highly activated points borrowed from similarity maps. Remarkably, READ features an intuitive design, Similarity as Points module (SasP), which can be seamlessly applied to <SEG>-like paradigms in a plug-and-play fashion. Also, extensive experiments have been conducted on ReasonSeg and RefCOCO(+/g) datasets. To validate whether READ suffers from catastrophic forgetting of previous skills after fine-tuning, we further assess its generation ability on an augmented FP-RefCOCO(+/g) dataset. All codes and models are publicly available at https://github.com/rui-qian/READ.

  • 3 authors
·
Dec 23, 2024

Factorized Learning for Temporally Grounded Video-Language Models

Recent video-language models have shown great potential for video understanding, but still struggle with accurate temporal grounding for event-level perception. We observe that two main factors in video understanding (i.e., temporal grounding and textual response) form a logical hierarchy: accurate temporal evidence grounding lays the foundation for reliable textual response. However, existing works typically handle these two tasks in a coupled manner without a clear logical structure, leading to sub-optimal objectives. We address this from a factorized learning perspective. We first propose D^2VLM, a framework that decouples the learning of these two tasks while also emphasizing their inherent dependency. We adopt a "grounding then answering with evidence referencing" paradigm and introduce evidence tokens for evidence grounding, which emphasize event-level visual semantic capture beyond the focus on timestamp representation in existing works. To further facilitate the learning of these two tasks, we introduce a novel factorized preference optimization (FPO) algorithm. Unlike standard preference optimization, FPO explicitly incorporates probabilistic temporal grounding modeling into the optimization objective, enabling preference learning for both temporal grounding and textual response. We also construct a synthetic dataset to address the lack of suitable datasets for factorized preference learning with explicit temporal grounding. Experiments on various tasks demonstrate the clear advantage of our approach. Our source code is available at https://github.com/nusnlp/d2vlm.

Making the Most of Text Semantics to Improve Biomedical Vision--Language Processing

Multi-modal data abounds in biomedicine, such as radiology images and reports. Interpreting this data at scale is essential for improving clinical care and accelerating clinical research. Biomedical text with its complex semantics poses additional challenges in vision--language modelling compared to the general domain, and previous work has used insufficiently adapted models that lack domain-specific language understanding. In this paper, we show that principled textual semantic modelling can substantially improve contrastive learning in self-supervised vision--language processing. We release a language model that achieves state-of-the-art results in radiology natural language inference through its improved vocabulary and novel language pretraining objective leveraging semantics and discourse characteristics in radiology reports. Further, we propose a self-supervised joint vision--language approach with a focus on better text modelling. It establishes new state of the art results on a wide range of publicly available benchmarks, in part by leveraging our new domain-specific language model. We release a new dataset with locally-aligned phrase grounding annotations by radiologists to facilitate the study of complex semantic modelling in biomedical vision--language processing. A broad evaluation, including on this new dataset, shows that our contrastive learning approach, aided by textual-semantic modelling, outperforms prior methods in segmentation tasks, despite only using a global-alignment objective.

  • 12 authors
·
Apr 20, 2022

AgentCPM-GUI: Building Mobile-Use Agents with Reinforcement Fine-Tuning

The recent progress of large language model agents has opened new possibilities for automating tasks through graphical user interfaces (GUIs), especially in mobile environments where intelligent interaction can greatly enhance usability. However, practical deployment of such agents remains constrained by several key challenges. Existing training data is often noisy and lack semantic diversity, which hinders the learning of precise grounding and planning. Models trained purely by imitation tend to overfit to seen interface patterns and fail to generalize in unfamiliar scenarios. Moreover, most prior work focuses on English interfaces while overlooks the growing diversity of non-English applications such as those in the Chinese mobile ecosystem. In this work, we present AgentCPM-GUI, an 8B-parameter GUI agent built for robust and efficient on-device GUI interaction. Our training pipeline includes grounding-aware pre-training to enhance perception, supervised fine-tuning on high-quality Chinese and English trajectories to imitate human-like actions, and reinforcement fine-tuning with GRPO to improve reasoning capability. We also introduce a compact action space that reduces output length and supports low-latency execution on mobile devices. AgentCPM-GUI achieves state-of-the-art performance on five public benchmarks and a new Chinese GUI benchmark called CAGUI, reaching 96.9% Type-Match and 91.3% Exact-Match. To facilitate reproducibility and further research, we publicly release all code, model checkpoint, and evaluation data.

  • 25 authors
·
Jun 2, 2025

VAMOS: A Hierarchical Vision-Language-Action Model for Capability-Modulated and Steerable Navigation

A fundamental challenge in robot navigation lies in learning policies that generalize across diverse environments while conforming to the unique physical constraints and capabilities of a specific embodiment (e.g., quadrupeds can walk up stairs, but rovers cannot). We propose VAMOS, a hierarchical VLA that decouples semantic planning from embodiment grounding: a generalist planner learns from diverse, open-world data, while a specialist affordance model learns the robot's physical constraints and capabilities in safe, low-cost simulation. We enabled this separation by carefully designing an interface that lets a high-level planner propose candidate paths directly in image space that the affordance model then evaluates and re-ranks. Our real-world experiments show that VAMOS achieves higher success rates in both indoor and complex outdoor navigation than state-of-the-art model-based and end-to-end learning methods. We also show that our hierarchical design enables cross-embodied navigation across legged and wheeled robots and is easily steerable using natural language. Real-world ablations confirm that the specialist model is key to embodiment grounding, enabling a single high-level planner to be deployed across physically distinct wheeled and legged robots. Finally, this model significantly enhances single-robot reliability, achieving 3X higher success rates by rejecting physically infeasible plans. Website: https://vamos-vla.github.io/

  • 12 authors
·
Oct 23, 2025

Dspy-based Neural-Symbolic Pipeline to Enhance Spatial Reasoning in LLMs

Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often struggle with spatial reasoning. This paper presents a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities through iterative feedback between LLMs and Answer Set Programming (ASP). We evaluate our approach on two benchmark datasets: StepGame and SparQA, implementing three distinct strategies: (1) direct prompting baseline, (2) Facts+Rules prompting, and (3) DSPy-based LLM+ASP pipeline with iterative refinement. Our experimental results demonstrate that the LLM+ASP pipeline significantly outperforms baseline methods, achieving an average 82% accuracy on StepGame and 69% on SparQA, marking improvements of 40-50% and 8-15% respectively over direct prompting. The success stems from three key innovations: (1) effective separation of semantic parsing and logical reasoning through a modular pipeline, (2) iterative feedback mechanism between LLMs and ASP solvers that improves program rate, and (3) robust error handling that addresses parsing, grounding, and solving failures. Additionally, we propose Facts+Rules as a lightweight alternative that achieves comparable performance on complex SparQA dataset, while reducing computational overhead.Our analysis across different LLM architectures (Deepseek, Llama3-70B, GPT-4.0 mini) demonstrates the framework's generalizability and provides insights into the trade-offs between implementation complexity and reasoning capability, contributing to the development of more interpretable and reliable AI systems.

  • 3 authors
·
Nov 27, 2024

NORA: A Small Open-Sourced Generalist Vision Language Action Model for Embodied Tasks

Existing Visual-Language-Action (VLA) models have shown promising performance in zero-shot scenarios, demonstrating impressive task execution and reasoning capabilities. However, a significant challenge arises from the limitations of visual encoding, which can result in failures during tasks such as object grasping. Moreover, these models typically suffer from high computational overhead due to their large sizes, often exceeding 7B parameters. While these models excel in reasoning and task planning, the substantial computational overhead they incur makes them impractical for real-time robotic environments, where speed and efficiency are paramount. To address the limitations of existing VLA models, we propose NORA, a 3B-parameter model designed to reduce computational overhead while maintaining strong task performance. NORA adopts the Qwen-2.5-VL-3B multimodal model as its backbone, leveraging its superior visual-semantic understanding to enhance visual reasoning and action grounding. Additionally, our is trained on 970k real-world robot demonstrations and equipped with the FAST+ tokenizer for efficient action sequence generation. Experimental results demonstrate that NORA outperforms existing large-scale VLA models, achieving better task performance with significantly reduced computational overhead, making it a more practical solution for real-time robotic autonomy.

  • 8 authors
·
Apr 28, 2025 2

Describe Anything Anywhere At Any Moment

Computer vision and robotics applications ranging from augmented reality to robot autonomy in large-scale environments require spatio-temporal memory frameworks that capture both geometric structure for accurate language-grounding as well as semantic detail. Existing methods face a tradeoff, where producing rich open-vocabulary descriptions comes at the expense of real-time performance when these descriptions have to be grounded in 3D. To address these challenges, we propose Describe Anything, Anywhere, at Any Moment (DAAAM), a novel spatio-temporal memory framework for large-scale and real-time 4D scene understanding. DAAAM introduces a novel optimization-based frontend to infer detailed semantic descriptions from localized captioning models, such as the Describe Anything Model (DAM), leveraging batch processing to speed up inference by an order of magnitude for online processing. It leverages such semantic understanding to build a hierarchical 4D scene graph (SG), which acts as an effective globally spatially and temporally consistent memory representation. DAAAM constructs 4D SGs with detailed, geometrically grounded descriptions while maintaining real-time performance. We show that DAAAM's 4D SG interfaces well with a tool-calling agent for inference and reasoning. We thoroughly evaluate DAAAM in the complex task of spatio-temporal question answering on the NaVQA benchmark and show its generalization capabilities for sequential task grounding on the SG3D benchmark. We further curate an extended OC-NaVQA benchmark for large-scale and long-time evaluations. DAAAM achieves state-of-the-art results in both tasks, improving OC-NaVQA question accuracy by 53.6%, position errors by 21.9%, temporal errors by 21.6%, and SG3D task grounding accuracy by 27.8% over the most competitive baselines, respectively. We release our data and code open-source.

  • 3 authors
·
Nov 29, 2025

Visual Contextual Attack: Jailbreaking MLLMs with Image-Driven Context Injection

With the emergence of strong visual-language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments. Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: visual-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack. VisCo fabricates contextual dialogue using four distinct visual-focused strategies, dynamically generating auxiliary images when necessary to construct a visual-centric jailbreak scenario. To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which performs a toxicity score of 2.48 and an ASR of 22.2%. The code is available at https://github.com/Dtc7w3PQ/Visco-Attack.

  • 4 authors
·
Jul 3, 2025

Grounded Decoding: Guiding Text Generation with Grounded Models for Robot Control

Recent progress in large language models (LLMs) has demonstrated the ability to learn and leverage Internet-scale knowledge through pre-training with autoregressive models. Unfortunately, applying such models to settings with embodied agents, such as robots, is challenging due to their lack of experience with the physical world, inability to parse non-language observations, and ignorance of rewards or safety constraints that robots may require. On the other hand, language-conditioned robotic policies that learn from interaction data can provide the necessary grounding that allows the agent to be correctly situated in the real world, but such policies are limited by the lack of high-level semantic understanding due to the limited breadth of the interaction data available for training them. Thus, if we want to make use of the semantic knowledge in a language model while still situating it in an embodied setting, we must construct an action sequence that is both likely according to the language model and also realizable according to grounded models of the environment. We frame this as a problem similar to probabilistic filtering: decode a sequence that both has high probability under the language model and high probability under a set of grounded model objectives. We demonstrate this guided decoding strategy is able to solve complex, long-horizon embodiment tasks in a robotic setting by leveraging the knowledge of both models. The project's website can be found at grounded-decoding.github.io.

  • 11 authors
·
Mar 1, 2023

ONE-PEACE: Exploring One General Representation Model Toward Unlimited Modalities

In this work, we explore a scalable way for building a general representation model toward unlimited modalities. We release ONE-PEACE, a highly extensible model with 4B parameters that can seamlessly align and integrate representations across vision, audio, and language modalities. The architecture of ONE-PEACE comprises modality adapters, shared self-attention layers, and modality FFNs. This design allows for the easy extension of new modalities by adding adapters and FFNs, while also enabling multi-modal fusion through self-attention layers. To pretrain ONE-PEACE, we develop two modality-agnostic pretraining tasks, cross-modal aligning contrast and intra-modal denoising contrast, which align the semantic space of different modalities and capture fine-grained details within modalities concurrently. With the scaling-friendly architecture and pretraining tasks, ONE-PEACE has the potential to expand to unlimited modalities. Without using any vision or language pretrained model for initialization, ONE-PEACE achieves leading results on a wide range of uni-modal and multi-modal tasks, including image classification (ImageNet), semantic segmentation (ADE20K), audio-text retrieval (AudioCaps, Clotho), audio classification (ESC-50, FSD50K, VGGSound), audio question answering (AVQA), image-text retrieval (MSCOCO, Flickr30K), and visual grounding (RefCOCO/+/g). Code is available at https://github.com/OFA-Sys/ONE-PEACE.

  • 8 authors
·
May 18, 2023

RVTBench: A Benchmark for Visual Reasoning Tasks

Visual reasoning, the capability to interpret visual input in response to implicit text query through multi-step reasoning, remains a challenge for deep learning models due to the lack of relevant benchmarks. Previous work in visual reasoning has primarily focused on reasoning segmentation, where models aim to segment objects based on implicit text queries. This paper introduces reasoning visual tasks (RVTs), a unified formulation that extends beyond traditional video reasoning segmentation to a diverse family of visual language reasoning problems, which can therefore accommodate multiple output formats including bounding boxes, natural language descriptions, and question-answer pairs. Correspondingly, we identify the limitations in current benchmark construction methods that rely solely on large language models (LLMs), which inadequately capture complex spatial-temporal relationships and multi-step reasoning chains in video due to their reliance on token representation, resulting in benchmarks with artificially limited reasoning complexity. To address this limitation, we propose a novel automated RVT benchmark construction pipeline that leverages digital twin (DT) representations as structured intermediaries between perception and the generation of implicit text queries. Based on this method, we construct RVTBench, a RVT benchmark containing 3,896 queries of over 1.2 million tokens across four types of RVT (segmentation, grounding, VQA and summary), three reasoning categories (semantic, spatial, and temporal), and four increasing difficulty levels, derived from 200 video sequences. Finally, we propose RVTagent, an agent framework for RVT that allows for zero-shot generalization across various types of RVT without task-specific fine-tuning.

  • 4 authors
·
May 17, 2025