new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 13

CtrlVDiff: Controllable Video Generation via Unified Multimodal Video Diffusion

We tackle the dual challenges of video understanding and controllable video generation within a unified diffusion framework. Our key insights are two-fold: geometry-only cues (e.g., depth, edges) are insufficient: they specify layout but under-constrain appearance, materials, and illumination, limiting physically meaningful edits such as relighting or material swaps and often causing temporal drift. Enriching the model with additional graphics-based modalities (intrinsics and semantics) provides complementary constraints that both disambiguate understanding and enable precise, predictable control during generation. However, building a single model that uses many heterogeneous cues introduces two core difficulties. Architecturally, the model must accept any subset of modalities, remain robust to missing inputs, and inject control signals without sacrificing temporal consistency. Data-wise, training demands large-scale, temporally aligned supervision that ties real videos to per-pixel multimodal annotations. We then propose CtrlVDiff, a unified diffusion model trained with a Hybrid Modality Control Strategy (HMCS) that routes and fuses features from depth, normals, segmentation, edges, and graphics-based intrinsics (albedo, roughness, metallic), and re-renders videos from any chosen subset with strong temporal coherence. To enable this, we build MMVideo, a hybrid real-and-synthetic dataset aligned across modalities and captions. Across understanding and generation benchmarks, CtrlVDiff delivers superior controllability and fidelity, enabling layer-wise edits (relighting, material adjustment, object insertion) and surpassing state-of-the-art baselines while remaining robust when some modalities are unavailable.

  • 11 authors
·
Nov 26, 2025

PC-DARTS: Partial Channel Connections for Memory-Efficient Architecture Search

Differentiable architecture search (DARTS) provided a fast solution in finding effective network architectures, but suffered from large memory and computing overheads in jointly training a super-network and searching for an optimal architecture. In this paper, we present a novel approach, namely, Partially-Connected DARTS, by sampling a small part of super-network to reduce the redundancy in exploring the network space, thereby performing a more efficient search without comprising the performance. In particular, we perform operation search in a subset of channels while bypassing the held out part in a shortcut. This strategy may suffer from an undesired inconsistency on selecting the edges of super-net caused by sampling different channels. We alleviate it using edge normalization, which adds a new set of edge-level parameters to reduce uncertainty in search. Thanks to the reduced memory cost, PC-DARTS can be trained with a larger batch size and, consequently, enjoys both faster speed and higher training stability. Experimental results demonstrate the effectiveness of the proposed method. Specifically, we achieve an error rate of 2.57% on CIFAR10 with merely 0.1 GPU-days for architecture search, and a state-of-the-art top-1 error rate of 24.2% on ImageNet (under the mobile setting) using 3.8 GPU-days for search. Our code has been made available at: https://github.com/yuhuixu1993/PC-DARTS.

  • 7 authors
·
Jul 12, 2019