new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 13

Probabilistic Programming with Programmable Variational Inference

Compared to the wide array of advanced Monte Carlo methods supported by modern probabilistic programming languages (PPLs), PPL support for variational inference (VI) is less developed: users are typically limited to a predefined selection of variational objectives and gradient estimators, which are implemented monolithically (and without formal correctness arguments) in PPL backends. In this paper, we propose a more modular approach to supporting variational inference in PPLs, based on compositional program transformation. In our approach, variational objectives are expressed as programs, that may employ first-class constructs for computing densities of and expected values under user-defined models and variational families. We then transform these programs systematically into unbiased gradient estimators for optimizing the objectives they define. Our design enables modular reasoning about many interacting concerns, including automatic differentiation, density accumulation, tracing, and the application of unbiased gradient estimation strategies. Additionally, relative to existing support for VI in PPLs, our design increases expressiveness along three axes: (1) it supports an open-ended set of user-defined variational objectives, rather than a fixed menu of options; (2) it supports a combinatorial space of gradient estimation strategies, many not automated by today's PPLs; and (3) it supports a broader class of models and variational families, because it supports constructs for approximate marginalization and normalization (previously introduced only for Monte Carlo inference). We implement our approach in an extension to the Gen probabilistic programming system (genjax.vi, implemented in JAX), and evaluate on several deep generative modeling tasks, showing minimal performance overhead vs. hand-coded implementations and performance competitive with well-established open-source PPLs.

  • 7 authors
·
Jun 22, 2024 1

Splines-Based Feature Importance in Kolmogorov-Arnold Networks: A Framework for Supervised Tabular Data Dimensionality Reduction

High-dimensional datasets require effective feature selection to improve predictive performance, interpretability, and robustness. We propose and evaluate feature selection methods for tabular datasets based on Kolmogorov-Arnold networks (KANs), which parameterize feature transformations through splines, enabling direct access to interpretable importance measures. We introduce four KAN-based selectors (KAN-L1, KAN-L2, KAN-SI, KAN-KO) and compare them against classical baselines (LASSO, Random Forest, Mutual Information, SVM-RFE) across multiple classification and regression tabular dataset benchmarks. Average (over three retention levels: 20\%, 40\%, and 60\%) F1 scores and R^2 score results reveal that KAN-based selectors, particularly KAN-L2, KAN-L1, KAN-SI, and KAN-KO, are competitive with and sometimes superior to classical baselines in structured and synthetic datasets. However, KAN-L1 is often too aggressive in regression, removing useful features, while KAN-L2 underperforms in classification, where simple coefficient shrinkage misses complex feature interactions. KAN-L2 and KAN-SI provide robust performance on noisy regression datasets and heterogeneous datasets, aligning closely with ensemble predictors. In classification tasks, KAN selectors such as KAN-L1, KAN-KO, and KAN-SI sometimes surpass the other selectors by eliminating redundancy, particularly in high-dimensional multi-class data. Overall, our findings demonstrate that KAN-based feature selection provides a powerful and interpretable alternative to traditional methods, capable of uncovering nonlinear and multivariate feature relevance beyond sparsity or impurity-based measures.

  • 2 authors
·
Sep 27, 2025

TTS-VAR: A Test-Time Scaling Framework for Visual Auto-Regressive Generation

Scaling visual generation models is essential for real-world content creation, yet requires substantial training and computational expenses. Alternatively, test-time scaling has garnered growing attention due to resource efficiency and promising performance. In this work, we present TTS-VAR, the first general test-time scaling framework for visual auto-regressive (VAR) models, modeling the generation process as a path searching problem. To dynamically balance computational efficiency with exploration capacity, we first introduce an adaptive descending batch size schedule throughout the causal generation process. Besides, inspired by VAR's hierarchical coarse-to-fine multi-scale generation, our framework integrates two key components: (i) At coarse scales, we observe that generated tokens are hard for evaluation, possibly leading to erroneous acceptance of inferior samples or rejection of superior samples. Noticing that the coarse scales contain sufficient structural information, we propose clustering-based diversity search. It preserves structural variety through semantic feature clustering, enabling later selection on samples with higher potential. (ii) In fine scales, resampling-based potential selection prioritizes promising candidates using potential scores, which are defined as reward functions incorporating multi-scale generation history. Experiments on the powerful VAR model Infinity show a notable 8.7% GenEval score improvement (from 0.69 to 0.75). Key insights reveal that early-stage structural features effectively influence final quality, and resampling efficacy varies across generation scales. Code is available at https://github.com/ali-vilab/TTS-VAR.

  • 7 authors
·
Jul 24, 2025 2

SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models

Instruction-following is a fundamental capability of language models, requiring the model to recognize even the most subtle requirements in the instructions and accurately reflect them in its output. Such an ability is well-suited for and often optimized by preference learning. However, existing methods often directly sample multiple independent responses from the model when creating preference pairs. Such practice can introduce content variations irrelevant to whether the instruction is precisely followed (e.g., different expressions about the same semantic), interfering with the goal of teaching models to recognize the key differences that lead to improved instruction following. In light of this, we introduce SPaR, a self-play framework integrating tree-search self-refinement to yield valid and comparable preference pairs free from distractions. By playing against itself, an LLM employs a tree-search strategy to refine its previous responses with respect to the instruction while minimizing unnecessary variations. Our experiments show that a LLaMA3-8B model, trained over three iterations guided by SPaR, surpasses GPT-4-Turbo on the IFEval benchmark without losing general capabilities. Furthermore, SPaR demonstrates promising scalability and transferability, greatly enhancing models like GLM-4-9B and LLaMA3-70B. We also identify how inference scaling in tree search would impact model performance. Our code and data are publicly available at https://github.com/thu-coai/SPaR.

  • 10 authors
·
Dec 16, 2024 2

Progressive Supernet Training for Efficient Visual Autoregressive Modeling

Visual Auto-Regressive (VAR) models significantly reduce inference steps through the "next-scale" prediction paradigm. However, progressive multi-scale generation incurs substantial memory overhead due to cumulative KV caching, limiting practical deployment. We observe a scale-depth asymmetric dependency in VAR: early scales exhibit extreme sensitivity to network depth, while later scales remain robust to depth reduction. Inspired by this, we propose VARiant: by equidistant sampling, we select multiple subnets ranging from 16 to 2 layers from the original 30-layer VAR-d30 network. Early scales are processed by the full network, while later scales utilize subnet. Subnet and the full network share weights, enabling flexible depth adjustment within a single model. However, weight sharing between subnet and the entire network can lead to optimization conflicts. To address this, we propose a progressive training strategy that breaks through the Pareto frontier of generation quality for both subnets and the full network under fixed-ratio training, achieving joint optimality. Experiments on ImageNet demonstrate that, compared to the pretrained VAR-d30 (FID 1.95), VARiant-d16 and VARiant-d8 achieve nearly equivalent quality (FID 2.05/2.12) while reducing memory consumption by 40-65%. VARiant-d2 achieves 3.5 times speedup and 80% memory reduction at moderate quality cost (FID 2.97). In terms of deployment, VARiant's single-model architecture supports zero-cost runtime depth switching and provides flexible deployment options from high quality to extreme efficiency, catering to diverse application scenarios.

  • 8 authors
·
Nov 20, 2025

Fine-Tuning Visual Autoregressive Models for Subject-Driven Generation

Recent advances in text-to-image generative models have enabled numerous practical applications, including subject-driven generation, which fine-tunes pretrained models to capture subject semantics from only a few examples. While diffusion-based models produce high-quality images, their extensive denoising steps result in significant computational overhead, limiting real-world applicability. Visual autoregressive~(VAR) models, which predict next-scale tokens rather than spatially adjacent ones, offer significantly faster inference suitable for practical deployment. In this paper, we propose the first VAR-based approach for subject-driven generation. However, na\"{\i}ve fine-tuning VAR leads to computational overhead, language drift, and reduced diversity. To address these challenges, we introduce selective layer tuning to reduce complexity and prior distillation to mitigate language drift. Additionally, we found that the early stages have a greater influence on the generation of subject than the latter stages, which merely synthesize local details. Based on this finding, we propose scale-wise weighted tuning, which prioritizes coarser resolutions for promoting the model to focus on the subject-relevant information instead of local details. Extensive experiments validate that our method significantly outperforms diffusion-based baselines across various metrics and demonstrates its practical usage.

  • 6 authors
·
Apr 3, 2025

Enhancing Neural Subset Selection: Integrating Background Information into Set Representations

Learning neural subset selection tasks, such as compound selection in AI-aided drug discovery, have become increasingly pivotal across diverse applications. The existing methodologies in the field primarily concentrate on constructing models that capture the relationship between utility function values and subsets within their respective supersets. However, these approaches tend to overlook the valuable information contained within the superset when utilizing neural networks to model set functions. In this work, we address this oversight by adopting a probabilistic perspective. Our theoretical findings demonstrate that when the target value is conditioned on both the input set and subset, it is essential to incorporate an invariant sufficient statistic of the superset into the subset of interest for effective learning. This ensures that the output value remains invariant to permutations of the subset and its corresponding superset, enabling identification of the specific superset from which the subset originated. Motivated by these insights, we propose a simple yet effective information aggregation module designed to merge the representations of subsets and supersets from a permutation invariance perspective. Comprehensive empirical evaluations across diverse tasks and datasets validate the enhanced efficacy of our approach over conventional methods, underscoring the practicality and potency of our proposed strategies in real-world contexts.

  • 8 authors
·
Feb 5, 2024

Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation

Retrieval-augmented generation (RAG) has shown impressive capability in providing reliable answer predictions and addressing hallucination problems. A typical RAG implementation uses powerful retrieval models to extract external information and large language models (LLMs) to generate answers. In contrast, recent LLM-based retrieval has gained attention for its substantial improvements in information retrieval (IR) due to the LLMs' semantic understanding capability. However, directly applying LLM to RAG systems presents challenges. This may cause feature locality problems as massive parametric knowledge can hinder effective usage of global information across the corpus; for example, an LLM-based retriever often inputs document summaries instead of full documents. Moreover, various pre-trained tasks in LLMs introduce variance, further weakening performance as a retriever. To address these issues, we propose a novel two-stage fine-tuning architecture called Invar-RAG. In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning to tackle feature locality issues. To enhance retrieval performance, we develop two patterns (invariant and variant patterns) and an invariance loss to reduce LLM variance. In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information. Experimental results show that Invar-RAG significantly outperforms existing baselines across three open-domain question answering (ODQA) datasets. Code is available in the Supplementary Material for reproducibility.

  • 5 authors
·
Nov 11, 2024

What are the Desired Characteristics of Calibration Sets? Identifying Correlates on Long Form Scientific Summarization

Summarization models often generate text that is poorly calibrated to quality metrics because they are trained to maximize the likelihood of a single reference (MLE). To address this, recent work has added a calibration step, which exposes a model to its own ranked outputs to improve relevance or, in a separate line of work, contrasts positive and negative sets to improve faithfulness. While effective, much of this work has focused on how to generate and optimize these sets. Less is known about why one setup is more effective than another. In this work, we uncover the underlying characteristics of effective sets. For each training instance, we form a large, diverse pool of candidates and systematically vary the subsets used for calibration fine-tuning. Each selection strategy targets distinct aspects of the sets, such as lexical diversity or the size of the gap between positive and negatives. On three diverse scientific long-form summarization datasets (spanning biomedical, clinical, and chemical domains), we find, among others, that faithfulness calibration is optimal when the negative sets are extractive and more likely to be generated, whereas for relevance calibration, the metric margin between candidates should be maximized and surprise--the disagreement between model and metric defined candidate rankings--minimized. Code to create, select, and optimize calibration sets is available at https://github.com/griff4692/calibrating-summaries

  • 10 authors
·
May 12, 2023 1

ERASE: Benchmarking Feature Selection Methods for Deep Recommender Systems

Deep Recommender Systems (DRS) are increasingly dependent on a large number of feature fields for more precise recommendations. Effective feature selection methods are consequently becoming critical for further enhancing the accuracy and optimizing storage efficiencies to align with the deployment demands. This research area, particularly in the context of DRS, is nascent and faces three core challenges. Firstly, variant experimental setups across research papers often yield unfair comparisons, obscuring practical insights. Secondly, the existing literature's lack of detailed analysis on selection attributes, based on large-scale datasets and a thorough comparison among selection techniques and DRS backbones, restricts the generalizability of findings and impedes deployment on DRS. Lastly, research often focuses on comparing the peak performance achievable by feature selection methods, an approach that is typically computationally infeasible for identifying the optimal hyperparameters and overlooks evaluating the robustness and stability of these methods. To bridge these gaps, this paper presents ERASE, a comprehensive bEnchmaRk for feAture SElection for DRS. ERASE comprises a thorough evaluation of eleven feature selection methods, covering both traditional and deep learning approaches, across four public datasets, private industrial datasets, and a real-world commercial platform, achieving significant enhancement. Our code is available online for ease of reproduction.

  • 9 authors
·
Mar 19, 2024

Margin-aware Preference Optimization for Aligning Diffusion Models without Reference

Modern alignment techniques based on human preferences, such as RLHF and DPO, typically employ divergence regularization relative to the reference model to ensure training stability. However, this often limits the flexibility of models during alignment, especially when there is a clear distributional discrepancy between the preference data and the reference model. In this paper, we focus on the alignment of recent text-to-image diffusion models, such as Stable Diffusion XL (SDXL), and find that this "reference mismatch" is indeed a significant problem in aligning these models due to the unstructured nature of visual modalities: e.g., a preference for a particular stylistic aspect can easily induce such a discrepancy. Motivated by this observation, we propose a novel and memory-friendly preference alignment method for diffusion models that does not depend on any reference model, coined margin-aware preference optimization (MaPO). MaPO jointly maximizes the likelihood margin between the preferred and dispreferred image sets and the likelihood of the preferred sets, simultaneously learning general stylistic features and preferences. For evaluation, we introduce two new pairwise preference datasets, which comprise self-generated image pairs from SDXL, Pick-Style and Pick-Safety, simulating diverse scenarios of reference mismatch. Our experiments validate that MaPO can significantly improve alignment on Pick-Style and Pick-Safety and general preference alignment when used with Pick-a-Pic v2, surpassing the base SDXL and other existing methods. Our code, models, and datasets are publicly available via https://mapo-t2i.github.io

  • 6 authors
·
Jun 10, 2024 1

When Alignment Hurts: Decoupling Representational Spaces in Multilingual Models

Alignment with high-resource standard languages is often assumed to aid the modeling of related low-resource varieties. We challenge this assumption by demonstrating that excessive representational entanglement with a dominant variety, such as Modern Standard Arabic (MSA) in relation to Arabic dialects, can actively hinder generative modeling. We present the first comprehensive causal study of this phenomenon by analyzing and directly intervening in the internal representation geometry of large language models (LLMs). Our key contribution is an online variational probing framework that continuously estimates the subspace of the standard variety during fine-tuning, enabling projection-based decoupling from this space. While our study uses Arabic as a case due to its unusually rich parallel resources across 25 dialects, the broader motivation is methodological: dialectal MT serves as a controlled proxy for generative tasks where comparable multi-variety corpora are unavailable. Across 25 dialects, our intervention improves generation quality by up to +4.9 chrF++ and +2.0 on average compared to standard fine-tuning, despite a measured tradeoff in standard-language performance. These results provide causal evidence that subspace dominance by high-resource varieties can restrict generative capacity for related varieties. More generally, we unify geometric and information-theoretic probing with subspace-level causal interventions, offering practical tools for improving generative modeling in closely related language families and, more broadly, for controlling representational allocation in multilingual and multi-domain LLMs. Code will be released.

  • 7 authors
·
Aug 18, 2025

Making, not Taking, the Best of N

Obtaining high-quality generations in modern LLMs has largely been framed as a selection problem: identifying a single winning generation from a diverse pool of N samples, the Best-of-N (BoN). Yet, this approach is inherently zero-sum, discarding diverse and potentially useful information from the pool. Instead, we explore a collaborative setup, where all candidates can potentially contribute to the final winning generation. To this end, we propose Fusion-of-N (FusioN): a method that uses a general LLM judge to synthesize the most informative elements of each sample into a single final answer. We compare FusioN to BoN in two settings, (i) test-time scaling, where we sample and aggregate from a single model at test-time (ii) synthetic data generation, where we fuse samples from a pool of diverse teachers to improve a student model. We extensively benchmark both setups across 11 languages, 3 diverse tasks and varying model scales. Across the bench, FusioN consistently outperforms BoN showing versatility and robustness both in test-time scaling and in downstream gains from synthetic data generation. We also perform extensive analysis on FusioN, where it shows surprising strengths and robustness under challenging settings. These results show that we should shift how we think about evaluating and utilizing LLM generations from a monolithic measure of quality, to embracing their polylithic nature. This shift allows us to integrate diverse strengths, unlock latent potential, and achieve improvements that were previously inaccessible through selection alone.

CohereLabs Cohere Labs
·
Oct 1, 2025 2

Adapt-infty: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection

Visual instruction datasets from various distributors are released at different times and often contain a significant number of semantically redundant text-image pairs, depending on their task compositions (i.e., skills) or reference sources. This redundancy greatly limits the efficient deployment of lifelong adaptable multimodal large language models, hindering their ability to refine existing skills and acquire new competencies over time. To address this, we reframe the problem of Lifelong Instruction Tuning (LiIT) via data selection, where the model automatically selects beneficial samples to learn from earlier and new datasets based on the current state of acquired knowledge in the model. Based on empirical analyses that show that selecting the best data subset using a static importance measure is often ineffective for multi-task datasets with evolving distributions, we propose Adapt-infty, a new multi-way and adaptive data selection approach that dynamically balances sample efficiency and effectiveness during LiIT. We construct pseudo-skill clusters by grouping gradient-based sample vectors. Next, we select the best-performing data selector for each skill cluster from a pool of selector experts, including our newly proposed scoring function, Image Grounding score. This data selector samples a subset of the most important samples from each skill cluster for training. To prevent the continuous increase in the size of the dataset pool during LiIT, which would result in excessive computation, we further introduce a cluster-wise permanent data pruning strategy to remove the most semantically redundant samples from each cluster, keeping computational requirements manageable. Training with samples selected by Adapt-infty alleviates catastrophic forgetting, especially for rare tasks, and promotes forward transfer across the continuum using only a fraction of the original datasets.

  • 4 authors
·
Oct 14, 2024

Efficient Response Generation Method Selection for Fine-Tuning Large Language Models

The training data for fine-tuning large language models (LLMs) is typically structured as input-output pairs. However, for many tasks, there can be multiple equally valid output variations for the same input. Recent studies have observed that the choice of output variation used in training can affect the model's performance. This raises an important question: how can we generate the most effective output from the many possible response generation strategy options? Rather than relying on the traditional but resource-intensive train-and-evaluate approach, this paper proposes a scalable, approximate method for estimating the quality of a small subset of generated training data derived from the same input. We then evaluate how well this small subset of generated output fits the target model we are trying to train. We present a large-scale benchmark covering diverse reasoning-based datasets to support our study. The central idea is that a good output should closely resemble the output generated by the target LLM. We formalize this 'closeness' as the expected alignment score between a candidate output and the output sampled from the target LLM. We connect this measurement to the perplexity metric used in previous literature and demonstrate that leveraging an alignment-based metric can provide better predictions of model performance. Using this strategy, we can evaluate a small subset of the generated output from each response generation strategy option, then select the most effective strategy. We show that an LLM trained on data generated by the selected strategy could lead to a significant performance gain in many cases.

  • 3 authors
·
Feb 17, 2025

Evolving Language Models without Labels: Majority Drives Selection, Novelty Promotes Variation

Large language models (LLMs) are increasingly trained with reinforcement learning from verifiable rewards (RLVR), yet real-world deployment demands models that can self-improve without labels or external judges. Existing label-free methods, confidence minimization, self-consistency, or majority-vote objectives, stabilize learning but steadily shrink exploration, causing an entropy collapse: generations become shorter, less diverse, and brittle. Unlike prior approaches such as Test-Time Reinforcement Learning (TTRL), which primarily adapt models to the immediate unlabeled dataset at hand, our goal is broader: to enable general improvements without sacrificing the model's inherent exploration capacity and generalization ability, i.e., evolving. We formalize this issue and propose EVolution-Oriented and Label-free Reinforcement Learning (EVOL-RL), a simple rule that couples stability with variation under a label-free setting. EVOL-RL keeps the majority-voted answer as a stable anchor (selection) while adding a novelty-aware reward that favors responses whose reasoning differs from what has already been produced (variation), measured in semantic space. Implemented with GRPO, EVOL-RL also uses asymmetric clipping to preserve strong signals and an entropy regularizer to sustain search. This majority-for-selection + novelty-for-variation design prevents collapse, maintains longer and more informative chains of thought, and improves both pass@1 and pass@n. EVOL-RL consistently outperforms the majority-only TTRL baseline; e.g., training on label-free AIME24 lifts Qwen3-4B-Base AIME25 pass@1 from TTRL's 4.6% to 16.4%, and pass@16 from 18.5% to 37.9%. EVOL-RL not only prevents diversity collapse but also unlocks stronger generalization across domains (e.g., GPQA). Furthermore, we demonstrate that EVOL-RL also boosts performance in the RLVR setting, highlighting its broad applicability.

  • 10 authors
·
Sep 18, 2025 2

Get more for less: Principled Data Selection for Warming Up Fine-Tuning in LLMs

This work focuses on leveraging and selecting from vast, unlabeled, open data to pre-fine-tune a pre-trained language model. The goal is to minimize the need for costly domain-specific data for subsequent fine-tuning while achieving desired performance levels. While many data selection algorithms have been designed for small-scale applications, rendering them unsuitable for our context, some emerging methods do cater to language data scales. However, they often prioritize data that aligns with the target distribution. While this strategy may be effective when training a model from scratch, it can yield limited results when the model has already been pre-trained on a different distribution. Differing from prior work, our key idea is to select data that nudges the pre-training distribution closer to the target distribution. We show the optimality of this approach for fine-tuning tasks under certain conditions. We demonstrate the efficacy of our methodology across a diverse array of tasks (NLU, NLG, zero-shot) with models up to 2.7B, showing that it consistently surpasses other selection methods. Moreover, our proposed method is significantly faster than existing techniques, scaling to millions of samples within a single GPU hour. Our code is open-sourced (Code repository: https://anonymous.4open.science/r/DV4LLM-D761/ ). While fine-tuning offers significant potential for enhancing performance across diverse tasks, its associated costs often limit its widespread adoption; with this work, we hope to lay the groundwork for cost-effective fine-tuning, making its benefits more accessible.

  • 8 authors
·
May 4, 2024

Diversify and Conquer: Diversity-Centric Data Selection with Iterative Refinement

Finetuning large language models on instruction data is crucial for enhancing pre-trained knowledge and improving instruction-following capabilities. As instruction datasets proliferate, selecting optimal data for effective training becomes increasingly important. This work addresses the question: How can we determine the optimal subset of data for effective training? While existing research often emphasizes local criteria like instance quality for subset selection, we argue that a global approach focused on data diversity is more critical. Our method employs k-means clustering to ensure the selected subset effectively represents the full dataset. We propose an iterative refinement method inspired by active learning techniques to resample instances from clusters, reassessing each cluster's importance and sampling weight in every training iteration. This approach reduces the effect of outliers and automatically filters out clusters containing low-quality data. Through extensive evaluation across natural language reasoning, general world knowledge, code and math reasoning tasks, and by fine-tuning models from various families, we observe consistent improvements, achieving a 7% increase over random selection and a 3.8% improvement over state-of-the-art sampling methods. Our work highlights the significance of diversity-first sampling when finetuning LLMs to enhance performance across a broad array of evaluation tasks. Our code is available at https://github.com/for-ai/iterative-data-selection.

  • 4 authors
·
Sep 17, 2024

D3: Diversity, Difficulty, and Dependability-Aware Data Selection for Sample-Efficient LLM Instruction Tuning

Recent advancements in instruction tuning for large language models (LLMs) suggest that a small, high-quality dataset can significantly equip LLMs with instruction-following capabilities, outperforming large datasets often burdened by quality and redundancy issues. However, the challenge lies in automatically identifying valuable subsets from large datasets to boost both the effectiveness and efficiency of instruction tuning. In this paper, we first establish data selection criteria based on three distinct aspects of data value: diversity, difficulty, and dependability, and then propose the D3 method comprising two key steps of scoring and selection. Specifically, in the scoring step, we define the diversity function to measure sample distinctiveness and introduce the uncertainty-based prediction difficulty to evaluate sample difficulty by mitigating the interference of context-oriented generation diversity. Additionally, we integrate an external LLM for dependability assessment. In the selection step, we formulate the D3 weighted coreset objective, which jointly optimizes three aspects of data value to solve for the most valuable subset. The two steps of D3 can iterate multiple rounds, incorporating feedback to refine the selection focus adaptively. Experiments on both public datasets and the real-world Taobao Live application demonstrate the effectiveness of D3 in endowing LLMs with competitive or even superior instruction-following capabilities using less than 10\% of the entire dataset.

  • 8 authors
·
Mar 14, 2025

Utility-Diversity Aware Online Batch Selection for LLM Supervised Fine-tuning

Supervised fine-tuning (SFT) is a commonly used technique to adapt large language models (LLMs) to downstream tasks. In practice, SFT on a full dataset is computationally expensive and sometimes suffers from overfitting or bias amplification. This facilitates the rise of data curation in SFT, which prioritizes the most valuable data to optimze. This work studies the online batch selection family that dynamically scores and filters samples during the training process. However, existing popular methods often (i) rely merely on the utility of data to select a subset while neglecting other crucial factors like diversity, (ii) rely on external resources such as reference models or validation sets, and (iii) incur extra training time over full-dataset training. To address these limitations, this work develops UDS (Utility-Diversity Sampling), a framework for efficient online batch selection in SFT. UDS leverages the nuclear norm of the logits matrix to capture both data utility and intra-sample diversity, while estimating inter-sample diversity through efficient low-dimensional embedding comparisons with a lightweight memory buffer of historical samples. Such a design eliminates the need for external resources and unnecessary backpropagation, securing computational efficiency. Experiments on multiple benchmarks demonstrate that UDS consistently outperforms state-of-the-art online batch selection methods under varying data budgets, and significantly reduces training time compared to full-dataset fine-tuning. Code is available at https://github.com/gfyddha/UDS.

  • 5 authors
·
Oct 19, 2025

Exploring Multimodal Large Language Models for Radiology Report Error-checking

This paper proposes one of the first clinical applications of multimodal large language models (LLMs) as an assistant for radiologists to check errors in their reports. We created an evaluation dataset from two real-world radiology datasets (MIMIC-CXR and IU-Xray), with 1,000 subsampled reports each. A subset of original reports was modified to contain synthetic errors by introducing various type of mistakes. The evaluation contained two difficulty levels: SIMPLE for binary error-checking and COMPLEX for identifying error types. LLaVA (Large Language and Visual Assistant) variant models, including our instruction-tuned model, were used for the evaluation. Additionally, a domain expert evaluation was conducted on a small test set. At the SIMPLE level, the LLaVA v1.5 model outperformed other publicly available models. Instruction tuning significantly enhanced performance by 47.4% and 25.4% on MIMIC-CXR and IU-Xray data, respectively. The model also surpassed the domain experts accuracy in the MIMIC-CXR dataset by 1.67%. Notably, among the subsets (N=21) of the test set where a clinician did not achieve the correct conclusion, the LLaVA ensemble mode correctly identified 71.4% of these cases. This study marks a promising step toward utilizing multi-modal LLMs to enhance diagnostic accuracy in radiology. The ensemble model demonstrated comparable performance to clinicians, even capturing errors overlooked by humans. Nevertheless, future work is needed to improve the model ability to identify the types of inconsistency.

  • 10 authors
·
Dec 20, 2023

Quick and Robust Feature Selection: the Strength of Energy-efficient Sparse Training for Autoencoders

Major complications arise from the recent increase in the amount of high-dimensional data, including high computational costs and memory requirements. Feature selection, which identifies the most relevant and informative attributes of a dataset, has been introduced as a solution to this problem. Most of the existing feature selection methods are computationally inefficient; inefficient algorithms lead to high energy consumption, which is not desirable for devices with limited computational and energy resources. In this paper, a novel and flexible method for unsupervised feature selection is proposed. This method, named QuickSelection, introduces the strength of the neuron in sparse neural networks as a criterion to measure the feature importance. This criterion, blended with sparsely connected denoising autoencoders trained with the sparse evolutionary training procedure, derives the importance of all input features simultaneously. We implement QuickSelection in a purely sparse manner as opposed to the typical approach of using a binary mask over connections to simulate sparsity. It results in a considerable speed increase and memory reduction. When tested on several benchmark datasets, including five low-dimensional and three high-dimensional datasets, the proposed method is able to achieve the best trade-off of classification and clustering accuracy, running time, and maximum memory usage, among widely used approaches for feature selection. Besides, our proposed method requires the least amount of energy among the state-of-the-art autoencoder-based feature selection methods.

  • 7 authors
·
Dec 1, 2020

Direct Retrieval-augmented Optimization: Synergizing Knowledge Selection and Language Models

Retrieval-augmented generation (RAG) integrates large language models ( LLM s) with retrievers to access external knowledge, improving the factuality of LLM generation in knowledge-grounded tasks. To optimize the RAG performance, most previous work independently fine-tunes the retriever to adapt to frozen LLM s or trains the LLMs to use documents retrieved by off-the-shelf retrievers, lacking end-to-end training supervision. Recent work addresses this limitation by jointly training these two components but relies on overly simplifying assumptions of document independence, which has been criticized for being far from real-world scenarios. Thus, effectively optimizing the overall RAG performance remains a critical challenge. We propose a direct retrieval-augmented optimization framework, named DRO, that enables end-to-end training of two key components: (i) a generative knowledge selection model and (ii) an LLM generator. DRO alternates between two phases: (i) document permutation estimation and (ii) re-weighted maximization, progressively improving RAG components through a variational approach. In the estimation step, we treat document permutation as a latent variable and directly estimate its distribution from the selection model by applying an importance sampling strategy. In the maximization step, we calibrate the optimization expectation using importance weights and jointly train the selection model and LLM generator. Our theoretical analysis reveals that DRO is analogous to policy-gradient methods in reinforcement learning. Extensive experiments conducted on five datasets illustrate that DRO outperforms the best baseline with 5%-15% improvements in EM and F1. We also provide in-depth experiments to qualitatively analyze the stability, convergence, and variance of DRO.

  • 10 authors
·
May 5, 2025

Harnessing Diversity for Important Data Selection in Pretraining Large Language Models

Data selection is of great significance in pre-training large language models, given the variation in quality within the large-scale available training corpora. To achieve this, researchers are currently investigating the use of data influence to measure the importance of data instances, i.e., a high influence score indicates that incorporating this instance to the training set is likely to enhance the model performance. Consequently, they select the top-k instances with the highest scores. However, this approach has several limitations. (1) Computing the influence of all available data is time-consuming. (2) The selected data instances are not diverse enough, which may hinder the pre-trained model's ability to generalize effectively to various downstream tasks. In this paper, we introduce Quad, a data selection approach that considers both quality and diversity by using data influence to achieve state-of-the-art pre-training results. In particular, noting that attention layers capture extensive semantic details, we have adapted the accelerated iHVP computation methods for attention layers, enhancing our ability to evaluate the influence of data, i.e., its quality. For the diversity, Quad clusters the dataset into similar data instances within each cluster and diverse instances across different clusters. For each cluster, if we opt to select data from it, we take some samples to evaluate the influence to prevent processing all instances. To determine which clusters to select, we utilize the classic Multi-Armed Bandit method, treating each cluster as an arm. This approach favors clusters with highly influential instances (ensuring high quality) or clusters that have been selected less frequently (ensuring diversity), thereby well balancing between quality and diversity.

  • 13 authors
·
Sep 25, 2024

Subset Selection Based On Multiple Rankings in the Presence of Bias: Effectiveness of Fairness Constraints for Multiwinner Voting Score Functions

We consider the problem of subset selection where one is given multiple rankings of items and the goal is to select the highest ``quality'' subset. Score functions from the multiwinner voting literature have been used to aggregate rankings into quality scores for subsets. We study this setting of subset selection problems when, in addition, rankings may contain systemic or unconscious biases toward a group of items. For a general model of input rankings and biases, we show that requiring the selected subset to satisfy group fairness constraints can improve the quality of the selection with respect to unbiased rankings. Importantly, we show that for fairness constraints to be effective, different multiwinner score functions may require a drastically different number of rankings: While for some functions, fairness constraints need an exponential number of rankings to recover a close-to-optimal solution, for others, this dependency is only polynomial. This result relies on a novel notion of ``smoothness'' of submodular functions in this setting that quantifies how well a function can ``correctly'' assess the quality of items in the presence of bias. The results in this paper can be used to guide the choice of multiwinner score functions for the subset selection setting considered here; we additionally provide a tool to empirically enable this.

  • 5 authors
·
Jun 16, 2023

Quantifying Variance in Evaluation Benchmarks

Evaluation benchmarks are the cornerstone of measuring capabilities of large language models (LLMs), as well as driving progress in said capabilities. Originally designed to make claims about capabilities (or lack thereof) in fully pretrained models, evaluation benchmarks are now also extensively used to decide between various training choices. Despite this widespread usage, we rarely quantify the variance in our evaluation benchmarks, which dictates whether differences in performance are meaningful. Here, we define and measure a range of metrics geared towards measuring variance in evaluation benchmarks, including seed variance across initialisations, and monotonicity during training. By studying a large number of models -- both openly available and pretrained from scratch -- we provide empirical estimates for a variety of variance metrics, with considerations and recommendations for practitioners. We also evaluate the utility and tradeoffs of continuous versus discrete performance measures and explore options for better understanding and reducing this variance. We find that simple changes, such as framing choice tasks (like MMLU) as completion tasks, can often reduce variance for smaller scale (sim7B) models, while more involved methods inspired from human testing literature (such as item analysis and item response theory) struggle to meaningfully reduce variance. Overall, our work provides insights into variance in evaluation benchmarks, suggests LM-specific techniques to reduce variance, and more generally encourages practitioners to carefully factor in variance when comparing models.

  • 8 authors
·
Jun 14, 2024

Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval

The ability to accurately model the fitness landscape of protein sequences is critical to a wide range of applications, from quantifying the effects of human variants on disease likelihood, to predicting immune-escape mutations in viruses and designing novel biotherapeutic proteins. Deep generative models of protein sequences trained on multiple sequence alignments have been the most successful approaches so far to address these tasks. The performance of these methods is however contingent on the availability of sufficiently deep and diverse alignments for reliable training. Their potential scope is thus limited by the fact many protein families are hard, if not impossible, to align. Large language models trained on massive quantities of non-aligned protein sequences from diverse families address these problems and show potential to eventually bridge the performance gap. We introduce Tranception, a novel transformer architecture leveraging autoregressive predictions and retrieval of homologous sequences at inference to achieve state-of-the-art fitness prediction performance. Given its markedly higher performance on multiple mutants, robustness to shallow alignments and ability to score indels, our approach offers significant gain of scope over existing approaches. To enable more rigorous model testing across a broader range of protein families, we develop ProteinGym -- an extensive set of multiplexed assays of variant effects, substantially increasing both the number and diversity of assays compared to existing benchmarks.

  • 7 authors
·
May 27, 2022

When Life Gives You Samples: The Benefits of Scaling up Inference Compute for Multilingual LLMs

Recent advancements in large language models (LLMs) have shifted focus toward scaling inference-time compute, improving performance without retraining the model. A common approach is to sample multiple outputs in parallel, and select one of these as the final output. However, work to date has focused on English and a handful of domains such as math and code. In contrast, we are most interested in techniques that generalize across open-ended tasks, formally verifiable tasks, and across languages. In this work, we study how to robustly scale inference-time compute for open-ended generative tasks in a multilingual, multi-task setting. Our findings show that both sampling strategy based on temperature variation and selection strategy must be adapted to account for diverse domains and varied language settings. We evaluate existing selection methods, revealing that strategies effective in English often fail to generalize across languages. We propose novel sampling and selection strategies specifically adapted for multilingual and multi-task inference scenarios, and show they yield notable gains across languages and tasks. In particular, our combined sampling and selection methods lead to an average +6.8 jump in win-rates for our 8B models on m-ArenaHard-v2.0 prompts, against proprietary models such as Gemini. At larger scale, Command-A (111B model) equipped with our methods, shows +9.0 improvement in win-rates on the same benchmark with just five samples against single-sample decoding, a substantial increase at minimal cost. Our results underscore the need for language- and task-aware approaches to inference-time compute, aiming to democratize performance improvements in underrepresented languages.

  • 5 authors
·
Jun 25, 2025 1

Retrieval-Augmented Fine-Tuning With Preference Optimization For Visual Program Generation

Visual programming languages (VPLs) allow users to create programs through graphical interfaces, which results in easier accessibility and their widespread usage in various domains. To further enhance this accessibility, recent research has focused on generating VPL code from user instructions using large language models (LLMs). Specifically, by employing prompting-based methods, these studies have shown promising results. Nevertheless, such approaches can be less effective for industrial VPLs such as Ladder Diagram (LD). LD is a pivotal language used in industrial automation processes and involves extensive domain-specific configurations, which are difficult to capture in a single prompt. In this work, we demonstrate that training-based methods outperform prompting-based methods for LD generation accuracy, even with smaller backbone models. Building on these findings, we propose a two-stage training strategy to further enhance VPL generation. First, we employ retrieval-augmented fine-tuning to leverage the repetitive use of subroutines commonly seen in industrial VPLs. Second, we apply direct preference optimization (DPO) to further guide the model toward accurate outputs, using systematically generated preference pairs through graph editing operations. Extensive experiments on real-world LD data demonstrate that our approach improves program-level accuracy by over 10% compared to supervised fine-tuning, which highlights its potential to advance industrial automation.

  • 7 authors
·
Feb 23, 2025

Decision Tree Induction Through LLMs via Semantically-Aware Evolution

Decision trees are a crucial class of models offering robust predictive performance and inherent interpretability across various domains, including healthcare, finance, and logistics. However, current tree induction methods often face limitations such as suboptimal solutions from greedy methods or prohibitive computational costs and limited applicability of exact optimization approaches. To address these challenges, we propose an evolutionary optimization method for decision tree induction based on genetic programming (GP). Our key innovation is the integration of semantic priors and domain-specific knowledge about the search space into the optimization algorithm. To this end, we introduce LLEGO, a framework that incorporates semantic priors into genetic search operators through the use of Large Language Models (LLMs), thereby enhancing search efficiency and targeting regions of the search space that yield decision trees with superior generalization performance. This is operationalized through novel genetic operators that work with structured natural language prompts, effectively utilizing LLMs as conditional generative models and sources of semantic knowledge. Specifically, we introduce fitness-guided crossover to exploit high-performing regions, and diversity-guided mutation for efficient global exploration of the search space. These operators are controlled by corresponding hyperparameters that enable a more nuanced balance between exploration and exploitation across the search space. Empirically, we demonstrate across various benchmarks that LLEGO evolves superior-performing trees compared to existing tree induction methods, and exhibits significantly more efficient search performance compared to conventional GP approaches.

  • 3 authors
·
Mar 18, 2025

Cream of the Crop: Harvesting Rich, Scalable and Transferable Multi-Modal Data for Instruction Fine-Tuning

The hypothesis that pretrained large language models (LLMs) necessitate only minimal supervision during the fine-tuning (SFT) stage (Zhou et al., 2024) has been substantiated by recent advancements in data curation and selection research. However, their stability and generalizability are compromised due to the vulnerability to experimental setups and validation protocols, falling short of surpassing random sampling (Diddee & Ippolito, 2024; Xia et al., 2024b). Built upon LLMs, multi-modal LLMs (MLLMs), combined with the sheer token volume and heightened heterogeneity of data sources, amplify both the significance and complexity of data selection. To harvest multi-modal instructional data in a robust and efficient manner, we re-define the granularity of the quality metric by decomposing it into 14 vision-language-related capabilities, and introduce multi-modal rich scorers to evaluate the capabilities of each data candidate. To promote diversity, in light of the inherent objective of the alignment stage, we take interaction style as diversity indicator and use a multi-modal rich styler to identify data instruction patterns. In doing so, our multi-modal rich scorers and styler (mmSSR) guarantee that high-scoring information is conveyed to users in diversified forms. Free from embedding-based clustering or greedy sampling, mmSSR efficiently scales to millions of data with varying budget constraints, supports customization for general or specific capability acquisition, and facilitates training-free generalization to new domains for curation. Across 10+ experimental settings, validated by 14 multi-modal benchmarks, we demonstrate consistent improvements over random sampling, baseline strategies and state-of-the-art selection methods, achieving 99.1% of full performance with only 30% of the 2.6M data.

  • 8 authors
·
Mar 17, 2025

Treasure Hunt: Real-time Targeting of the Long Tail using Training-Time Markers

One of the most profound challenges of modern machine learning is performing well on the long-tail of rare and underrepresented features. Large general-purpose models are trained for many tasks, but work best on high-frequency use cases. After training, it is hard to adapt a model to perform well on specific use cases underrepresented in the training corpus. Relying on prompt engineering or few-shot examples to maximize the output quality on a particular test case can be frustrating, as models can be highly sensitive to small changes, react in unpredicted ways or rely on a fixed system prompt for maintaining performance. In this work, we ask: "Can we optimize our training protocols to both improve controllability and performance on underrepresented use cases at inference time?" We revisit the divide between training and inference techniques to improve long-tail performance while providing users with a set of control levers the model is trained to be responsive to. We create a detailed taxonomy of data characteristics and task provenance to explicitly control generation attributes and implicitly condition generations at inference time. We fine-tune a base model to infer these markers automatically, which makes them optional at inference time. This principled and flexible approach yields pronounced improvements in performance, especially on examples from the long tail of the training distribution. While we observe an average lift of 5.7% win rates in open-ended generation quality with our markers, we see over 9.1% gains in underrepresented domains. We also observe relative lifts of up to 14.1% on underrepresented tasks like CodeRepair and absolute improvements of 35.3% on length instruction following evaluations.

  • 5 authors
·
Jun 17, 2025 4

B4: Towards Optimal Assessment of Plausible Code Solutions with Plausible Tests

Selecting the best code solution from multiple generated ones is an essential task in code generation, which can be achieved by using some reliable validators (e.g., developer-written test cases) for assistance. Since reliable test cases are not always available and can be expensive to build in practice, researchers propose to automatically generate test cases to assess code solutions. However, when both code solutions and test cases are plausible and not reliable, selecting the best solution becomes challenging. Although some heuristic strategies have been proposed to tackle this problem, they lack a strong theoretical guarantee and it is still an open question whether an optimal selection strategy exists. Our work contributes in two ways. First, we show that within a Bayesian framework, the optimal selection strategy can be defined based on the posterior probability of the observed passing states between solutions and tests. The problem of identifying the best solution is then framed as an integer programming problem. Second, we propose an efficient approach for approximating this optimal (yet uncomputable) strategy, where the approximation error is bounded by the correctness of prior knowledge. We then incorporate effective prior knowledge to tailor code generation tasks. Both theoretical and empirical studies confirm that existing heuristics are limited in selecting the best solutions with plausible test cases. Our proposed approximated optimal strategy B4 significantly surpasses existing heuristics in selecting code solutions generated by large language models (LLMs) with LLM-generated tests, achieving a relative performance improvement by up to 50% over the strongest heuristic and 246% over the random selection in the most challenging scenarios. Our code is publicly available at https://github.com/ZJU-CTAG/B4.

  • 7 authors
·
Sep 13, 2024 2

Analysis of Variational Sparse Autoencoders

Sparse Autoencoders (SAEs) have emerged as a promising approach for interpreting neural network representations by learning sparse, human-interpretable features from dense activations. We investigate whether incorporating variational methods into SAE architectures can improve feature organization and interpretability. We introduce the Variational Sparse Autoencoder (vSAE), which replaces deterministic ReLU gating with stochastic sampling from learned Gaussian posteriors and incorporates KL divergence regularization toward a standard normal prior. Our hypothesis is that this probabilistic sampling creates dispersive pressure, causing features to organize more coherently in the latent space while avoiding overlap. We evaluate a TopK vSAE against a standard TopK SAE on Pythia-70M transformer residual stream activations using comprehensive benchmarks including SAE Bench, individual feature interpretability analysis, and global latent space visualization through t-SNE. The vSAE underperforms standard SAE across core evaluation metrics, though excels at feature independence and ablation metrics. The KL divergence term creates excessive regularization pressure that substantially reduces the fraction of living features, leading to observed performance degradation. While vSAE features demonstrate improved robustness, they exhibit many more dead features than baseline. Our findings suggest that naive application of variational methods to SAEs does not improve feature organization or interpretability.

  • 2 authors
·
Sep 26, 2025

Threshold-Consistent Margin Loss for Open-World Deep Metric Learning

Existing losses used in deep metric learning (DML) for image retrieval often lead to highly non-uniform intra-class and inter-class representation structures across test classes and data distributions. When combined with the common practice of using a fixed threshold to declare a match, this gives rise to significant performance variations in terms of false accept rate (FAR) and false reject rate (FRR) across test classes and data distributions. We define this issue in DML as threshold inconsistency. In real-world applications, such inconsistency often complicates the threshold selection process when deploying commercial image retrieval systems. To measure this inconsistency, we propose a novel variance-based metric called Operating-Point-Inconsistency-Score (OPIS) that quantifies the variance in the operating characteristics across classes. Using the OPIS metric, we find that achieving high accuracy levels in a DML model does not automatically guarantee threshold consistency. In fact, our investigation reveals a Pareto frontier in the high-accuracy regime, where existing methods to improve accuracy often lead to degradation in threshold consistency. To address this trade-off, we introduce the Threshold-Consistent Margin (TCM) loss, a simple yet effective regularization technique that promotes uniformity in representation structures across classes by selectively penalizing hard sample pairs. Extensive experiments demonstrate TCM's effectiveness in enhancing threshold consistency while preserving accuracy, simplifying the threshold selection process in practical DML settings.

  • 7 authors
·
Jul 8, 2023

Joint Selection for Large-Scale Pre-Training Data via Policy Gradient-based Mask Learning

A fine-grained data recipe is crucial for pre-training large language models, as it can significantly enhance training efficiency and model performance. One important ingredient in the recipe is to select samples based on scores produced by defined rules, LLM judgment, or statistical information in embeddings, which can be roughly categorized into quality and diversity metrics. Due to the high computational cost when applied to trillion-scale token pre-training datasets such as FineWeb and DCLM, these two or more types of metrics are rarely considered jointly in a single selection process. However, in our empirical study, selecting samples based on quality metrics exhibit severe diminishing returns during long-term pre-training, while selecting on diversity metrics removes too many valuable high-quality samples, both of which limit pre-trained LLMs' capabilities. Therefore, we introduce DATAMASK, a novel and efficient joint learning framework designed for large-scale pre-training data selection that can simultaneously optimize multiple types of metrics in a unified process, with this study focusing specifically on quality and diversity metrics. DATAMASK approaches the selection process as a mask learning problem, involving iterative sampling of data masks, computation of policy gradients based on predefined objectives with sampled masks, and updating of mask sampling logits. Through policy gradient-based optimization and various acceleration enhancements, it significantly reduces selection time by 98.9% compared to greedy algorithm, enabling our study to explore joint learning within trillion-scale tokens. With DATAMASK, we select a subset of about 10% from the 15 trillion-token FineWeb dataset, termed FineWeb-Mask. Evaluated across 12 diverse tasks, we achieves significant improvements of 3.2% on a 1.5B dense model and 1.9% on a 7B MoE model.

  • 4 authors
·
Dec 30, 2025

Excision Score: Evaluating Edits with Surgical Precision

Many tasks revolve around editing a document, whether code or text. We formulate the revision similarity problem to unify a wide range of machine learning evaluation problems whose goal is to assess a revision to an existing document. We observe that revisions usually change only a small portion of an existing document, so the existing document and its immediate revisions share a majority of their content. We formulate five adequacy criteria for revision similarity measures, designed to align them with human judgement. We show that popular pairwise measures, like BLEU, fail to meet these criteria, because their scores are dominated by the shared content. They report high similarity between two revisions when humans would assess them as quite different. This is a fundamental flaw we address. We propose a novel static measure, Excision Score (ES), which computes longest common subsequence (LCS) to remove content shared by an existing document with the ground truth and predicted revisions, before comparing only the remaining divergent regions. This is analogous to a surgeon creating a sterile field to focus on the work area. We use approximation to speed the standard cubic LCS computation to quadratic. In code-editing evaluation, where static measures are often used as a cheap proxy for passing tests, we demonstrate that ES surpasses existing measures. When aligned with test execution on HumanEvalFix, ES improves over its nearest competitor, SARI, by 12% Pearson correlation and by >21% over standard measures like BLEU. The key criterion is invariance to shared context; when we perturb HumanEvalFix with increased shared context, ES' improvement over SARI increases to 20% and >30% over standard measures. ES also handles other corner cases that other measures do not, such as correctly aligning moved code blocks, and appropriately rewarding matching insertions or deletions.

  • 4 authors
·
Oct 24, 2025

Large-Scale Data Selection for Instruction Tuning

Selecting high-quality training data from a larger pool is a crucial step when instruction-tuning language models, as carefully curated datasets often produce models that outperform those trained on much larger, noisier datasets. Automated data selection approaches for instruction-tuning are typically tested by selecting small datasets (roughly 10k samples) from small pools (100-200k samples). However, popular deployed instruction-tuned models often train on hundreds of thousands to millions of samples, subsampled from even larger data pools. We present a systematic study of how well data selection methods scale to these settings, selecting up to 2.5M samples from pools of up to 5.8M samples and evaluating across 7 diverse tasks. We show that many recently proposed methods fall short of random selection in this setting (while using more compute), and even decline in performance when given access to larger pools of data to select over. However, we find that a variant of representation-based data selection (RDS+), which uses weighted mean pooling of pretrained LM hidden states, consistently outperforms more complex methods across all settings tested -- all whilst being more compute-efficient. Our findings highlight that the scaling properties of proposed automated selection methods should be more closely examined. We release our code, data, and models at https://github.com/hamishivi/automated-instruction-selection.

  • 5 authors
·
Mar 3, 2025 2

Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sampling

We consider the problem of recommending relevant content to users of an internet platform in the form of lists of items, called slates. We introduce a variational Bayesian Recurrent Neural Net recommender system that acts on time series of interactions between the internet platform and the user, and which scales to real world industrial situations. The recommender system is tested both online on real users, and on an offline dataset collected from a Norwegian web-based marketplace, FINN.no, that is made public for research. This is one of the first publicly available datasets which includes all the slates that are presented to users as well as which items (if any) in the slates were clicked on. Such a data set allows us to move beyond the common assumption that implicitly assumes that users are considering all possible items at each interaction. Instead we build our likelihood using the items that are actually in the slate, and evaluate the strengths and weaknesses of both approaches theoretically and in experiments. We also introduce a hierarchical prior for the item parameters based on group memberships. Both item parameters and user preferences are learned probabilistically. Furthermore, we combine our model with bandit strategies to ensure learning, and introduce `in-slate Thompson Sampling' which makes use of the slates to maximise explorative opportunities. We show experimentally that explorative recommender strategies perform on par or above their greedy counterparts. Even without making use of exploration to learn more effectively, click rates increase simply because of improved diversity in the recommended slates.

  • 3 authors
·
Apr 30, 2021

Add-One-In: Incremental Sample Selection for Large Language Models via a Choice-Based Greedy Paradigm

Selecting high-quality and diverse training samples from extensive datasets plays a crucial role in reducing training overhead and enhancing the performance of Large Language Models (LLMs). However, existing studies fall short in assessing the overall value of selected data, focusing primarily on individual quality, and struggle to strike an effective balance between ensuring diversity and minimizing data point traversals. Therefore, this paper introduces a novel choice-based sample selection framework that shifts the focus from evaluating individual sample quality to comparing the contribution value of different samples when incorporated into the subset. Thanks to the advanced language understanding capabilities of LLMs, we utilize LLMs to evaluate the value of each option during the selection process. Furthermore, we design a greedy sampling process where samples are incrementally added to the subset, thereby improving efficiency by eliminating the need for exhaustive traversal of the entire dataset with the limited budget. Extensive experiments demonstrate that selected data from our method not only surpass the performance of the full dataset but also achieves competitive results with state-of-the-art (SOTA) studies, while requiring fewer selections. Moreover, we validate our approach on a larger medical dataset, highlighting its practical applicability in real-world applications.

  • 8 authors
·
Mar 4, 2025