Spaces:
Sleeping
Sleeping
| import os | |
| from dotenv import load_dotenv | |
| from langgraph.graph import START, StateGraph, MessagesState | |
| from langgraph.prebuilt import tools_condition | |
| from langgraph.prebuilt import ToolNode | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| from langchain_groq import ChatGroq | |
| from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
| from langchain_community.tools.tavily_search import TavilySearchResults | |
| from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
| from langchain_community.vectorstores import SupabaseVectorStore | |
| from langchain_core.messages import SystemMessage, AIMessage, HumanMessage | |
| from langchain_core.tools import tool | |
| from langchain.tools.retriever import create_retriever_tool | |
| from langchain_community.retrievers import BM25Retriever | |
| from smolagents import DuckDuckGoSearchTool | |
| from smolagents import Tool | |
| from langchain.vectorstores import FAISS | |
| import faiss | |
| from langchain_community.docstore.in_memory import InMemoryDocstore | |
| # Load environment variables | |
| load_dotenv() | |
| class QuestionRetrieverTool(Tool): | |
| name="Question Search", | |
| description="Retrieve similar questions from the vector store." | |
| inputs = { | |
| "query": { | |
| "type": "string", | |
| "description": "The question you want relation about." | |
| } | |
| } | |
| output_type = "string" | |
| def __init__(self, docs): | |
| self.is_initialized = False | |
| self.retriever = BM25Retriever.from_documents(docs) | |
| def forward(self, query: str): | |
| results = self.retriever.get_relevant_documents(query) | |
| if results: | |
| return "\n\n".join([doc.page_content for doc in results[:3]]) | |
| else: | |
| return "No matching Questions found." | |
| def wiki_search(query: str) -> dict: | |
| """Search Wikipedia and return up to 2 documents.""" | |
| docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
| results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs] | |
| return {"wiki_results": "\n---\n".join(results)} | |
| def web_search(query: str) -> dict: | |
| """Search DDG and return up to 3 results.""" | |
| docs = DuckDuckGoSearchTool(max_results=3).invoke(query=query) | |
| results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs] | |
| return {"web_results": "\n---\n".join(results)} | |
| # --- Load system prompt --- | |
| with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
| system_prompt = f.read() | |
| sys_msg = SystemMessage(content=system_prompt) | |
| # --- Retriever Tool --- | |
| embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
| embedding_dim = 768 # for 'all-mpnet-base-v2' | |
| empty_index = faiss.IndexFlatL2(embedding_dim) | |
| docstore = InMemoryDocstore({}) | |
| vector_store = FAISS(embedding_function=embeddings, index=empty_index, docstore=docstore, index_to_docstore_id={}) | |
| retriever_tool = create_retriever_tool( | |
| retriever=vector_store.as_retriever(), | |
| name="Question Search", | |
| description="Retrieve similar questions from the vector store." | |
| ) | |
| tools = [ | |
| wiki_search, | |
| web_search, | |
| retriever_tool, | |
| ] | |
| # --- Graph Builder --- | |
| def build_graph(): | |
| llm = ChatHuggingFace( | |
| llm=HuggingFaceEndpoint( | |
| repo_id="meta-llama/Llama-2-7b-chat-hf", | |
| temperature=0, | |
| huggingfacehub_api_token=os.getenv("HF_TOKEN") | |
| ) | |
| ) | |
| # Bind tools to LLM | |
| llm_with_tools = llm.bind_tools(tools) | |
| # Define nodes | |
| def assistant(state: MessagesState): | |
| return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
| # Retriever node returns AIMessage | |
| def retriever(state: MessagesState): | |
| query = state["messages"][-1].content | |
| similar_docs = vector_store.similarity_search(query, k=1) | |
| if similar_docs: | |
| reference = similar_docs[0].page_content | |
| context_msg = HumanMessage(content=f"Here is a similar question and answer for reference:\n\n{reference}") | |
| else: | |
| context_msg = HumanMessage(content="No relevant example found.") | |
| return { | |
| "messages": [sys_msg] + state["messages"] + [context_msg] | |
| } | |
| builder = StateGraph(MessagesState) | |
| builder.add_node("retriever", retriever) | |
| builder.add_node("assistant", assistant) | |
| builder.add_node("tools", ToolNode(tools)) | |
| builder.add_edge(START, "retriever") | |
| builder.add_edge("retriever", "assistant") | |
| builder.add_conditional_edges("assistant", tools_condition) | |
| builder.add_edge("tools", "assistant") | |
| # Compile graph | |
| return builder.compile() | |