Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
|
@@ -14,21 +14,31 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
| 14 |
if not HF_TOKEN:
|
| 15 |
raise ValueError("HF_TOKEN environment variable not set.")
|
| 16 |
|
| 17 |
-
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
|
|
|
| 18 |
llm_client = InferenceClient(
|
| 19 |
model=repo_id,
|
| 20 |
token=HF_TOKEN,
|
| 21 |
)
|
| 22 |
|
| 23 |
-
# Configure Llama index settings
|
| 24 |
-
Settings.llm = HuggingFaceInferenceAPI(
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
# Settings.embed_model = HuggingFaceEmbedding(
|
| 33 |
# model_name="BAAI/bge-small-en-v1.5"
|
| 34 |
# )
|
|
@@ -40,9 +50,12 @@ Settings.embed_model = HuggingFaceEmbedding(
|
|
| 40 |
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
| 41 |
)
|
| 42 |
|
|
|
|
|
|
|
|
|
|
| 43 |
# Configure tokenizer and model if required
|
| 44 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 45 |
-
model = AutoModel.from_pretrained(
|
| 46 |
|
| 47 |
PERSIST_DIR = "db"
|
| 48 |
PDF_DIRECTORY = 'data'
|
|
|
|
| 14 |
if not HF_TOKEN:
|
| 15 |
raise ValueError("HF_TOKEN environment variable not set.")
|
| 16 |
|
| 17 |
+
# repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 18 |
+
repo_id = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
| 19 |
llm_client = InferenceClient(
|
| 20 |
model=repo_id,
|
| 21 |
token=HF_TOKEN,
|
| 22 |
)
|
| 23 |
|
| 24 |
+
# # Configure Llama index settings
|
| 25 |
+
# Settings.llm = HuggingFaceInferenceAPI(
|
| 26 |
+
# model_name=repo_id,
|
| 27 |
+
# tokenizer_name=repo_id,
|
| 28 |
+
# context_window=3000,
|
| 29 |
+
# token=HF_TOKEN,
|
| 30 |
+
# max_new_tokens=512,
|
| 31 |
+
# generate_kwargs={"temperature": 0.1},
|
| 32 |
+
# )
|
| 33 |
+
# Configure Llama index settings with the new model
|
| 34 |
+
Settings.llm = HuggingFaceInferenceAPI(
|
| 35 |
+
model_name=repo_id,
|
| 36 |
+
tokenizer_name=repo_id, # Use the same tokenizer as the model
|
| 37 |
+
context_window=3000,
|
| 38 |
+
token=HF_TOKEN,
|
| 39 |
+
max_new_tokens=512,
|
| 40 |
+
generate_kwargs={"temperature": 0.1},
|
| 41 |
+
)
|
| 42 |
# Settings.embed_model = HuggingFaceEmbedding(
|
| 43 |
# model_name="BAAI/bge-small-en-v1.5"
|
| 44 |
# )
|
|
|
|
| 50 |
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
| 51 |
)
|
| 52 |
|
| 53 |
+
# # Configure tokenizer and model if required
|
| 54 |
+
# tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
| 55 |
+
# model = AutoModel.from_pretrained("xlm-roberta-base")
|
| 56 |
# Configure tokenizer and model if required
|
| 57 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id) # Use the tokenizer from the new model
|
| 58 |
+
model = AutoModel.from_pretrained(repo_id) # Load the new model
|
| 59 |
|
| 60 |
PERSIST_DIR = "db"
|
| 61 |
PDF_DIRECTORY = 'data'
|