Spaces:
Sleeping
Sleeping
File size: 4,692 Bytes
cab012d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import os
import cv2
import torch
import pickle
import random
import numpy as np
from io import BytesIO
from PIL import Image, ImageFile
import torchvision.transforms.functional as TF
from scipy.ndimage.filters import gaussian_filter
ImageFile.LOAD_TRUNCATED_IMAGES = True
# Set random seed
def seed_torch(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# Load dataset
def recursively_read(rootdir, must_contain, exts=["png", "PNG", "jpg", "JPG", "jpeg", "JPEG"]):
out = []
for r, d, f in os.walk(rootdir):
for file in f:
if (file.split('.')[1] in exts) and (must_contain in os.path.join(r, file)):
out.append(os.path.join(r, file))
return out
def get_list(path, must_contain=''):
if ".pickle" in path:
with open(path, 'rb') as f:
image_list = pickle.load(f)
image_list = [item for item in image_list if must_contain in item]
else:
image_list = recursively_read(path, must_contain)
return image_list
# Data augmentation techniques
def data_augment(img, aug_config):
img = np.array(img)
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
img = np.repeat(img, 3, axis=2)
if random.random() < aug_config["blur_prob"]:
sig = sample_continuous(aug_config["blur_sig"])
gaussian_blur(img, sig)
if random.random() < aug_config["jpg_prob"]:
method = sample_discrete(aug_config["jpg_method"])
qual = sample_discrete(aug_config["jpg_qual"])
img = jpeg_from_key(img, qual, method)
return Image.fromarray(img)
# Data augmentation techniques
def tensor_data_augment(images, aug_config):
device = images.device
images = images.detach().cpu().permute(0, 2, 3, 1).numpy()
images = np.uint8(images * 255.)
outputs = []
for img in images:
if random.random() < aug_config["blur_prob"]:
sig = sample_continuous(aug_config["blur_sig"])
gaussian_blur(img, sig)
if random.random() < aug_config["jpg_prob"]:
method = sample_discrete(aug_config["jpg_method"])
qual = sample_discrete(aug_config["jpg_qual"])
img = jpeg_from_key(img, qual, method)
outputs.append(img)
outputs = np.stack(outputs)
outputs = torch.from_numpy(outputs).to(device).permute(0, 3, 1, 2).float() / 255.
return outputs
# Sample continuous or discrete values
def sample_continuous(s):
if len(s) == 1:
return s[0]
if len(s) == 2:
rg = s[1] - s[0]
return random.random() * rg + s[0]
raise ValueError("Length of iterable s should be 1 or 2.")
def sample_discrete(s):
if len(s) == 1:
return s[0]
return random.choice(s)
# Gaussian blur
def gaussian_blur(img, sigma):
gaussian_filter(img[:,:,0], output=img[:,:,0], sigma=sigma)
gaussian_filter(img[:,:,1], output=img[:,:,1], sigma=sigma)
gaussian_filter(img[:,:,2], output=img[:,:,2], sigma=sigma)
# JPEG compression
def cv2_jpg(img, compress_val):
img_cv2 = img[:,:,::-1]
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), compress_val]
result, encimg = cv2.imencode('.jpg', img_cv2, encode_param)
decimg = cv2.imdecode(encimg, 1)
return decimg[:,:,::-1]
def pil_jpg(img, compress_val):
out = BytesIO()
img = Image.fromarray(img)
img.save(out, format='jpeg', quality=compress_val)
img = Image.open(out)
# load from memory before ByteIO closes
img = np.array(img)
out.close()
return img
def png_to_jpeg(img, quality=95):
# Convert the PNG image to JPEG
# Input: PIL image
# Output: PIL image
out = BytesIO()
img.save(out, format='jpeg', quality=quality)
img = np.array(Image.open(out))
# Load from memory before ByteIO closes
out.close()
img = Image.fromarray(img)
return img
def jpeg_from_key(img, compress_val, key):
jpeg_dict = {'cv2': cv2_jpg, 'pil': pil_jpg}
method = jpeg_dict[key]
return method(img, compress_val)
# Custom resize function
def custom_resize(img, rz_interp, loadSize):
rz_dict = {'bilinear': Image.BILINEAR,
'bicubic': Image.BICUBIC,
'lanczos': Image.LANCZOS,
'nearest': Image.NEAREST}
interp = sample_discrete(rz_interp)
return TF.resize(img, loadSize, interpolation=rz_dict[interp])
def weights2cpu(weights):
for key in weights:
weights[key] = weights[key].cpu()
return weights
|