import torch from transformers import CLIPModel from torchvision import transforms from utils import data_augment # Semantic Detector (Extract semantic features using CLIP) class SemanticDetectorProGAN(torch.nn.Module): def __init__(self, dim_clip=768, num_classes=1): super(SemanticDetectorProGAN, self).__init__() # Get the pre-trained CLIP model_name = "openai/clip-vit-large-patch14" self.clip = CLIPModel.from_pretrained(model_name) # Freeze the CLIP visual encoder self.clip.requires_grad_(False) # Classifier self.fc = torch.nn.Linear(dim_clip, num_classes) # Normalization self.mean = [0.48145466, 0.4578275, 0.40821073] self.std = [0.26862954, 0.26130258, 0.27577711] # Resolution self.loadSize = 256 self.cropSize = 224 # Data augmentation self.blur_prob = 0.5 self.blur_sig = [0.0, 3.0] self.jpg_prob = 0.5 self.jpg_method = ['cv2', 'pil'] self.jpg_qual = list(range(30, 101)) # Define the augmentation configuration self.aug_config = { "blur_prob": self.blur_prob, "blur_sig": self.blur_sig, "jpg_prob": self.jpg_prob, "jpg_method": self.jpg_method, "jpg_qual": self.jpg_qual, } # Pre-processing crop_func = transforms.RandomCrop(self.cropSize) flip_func = transforms.RandomHorizontalFlip() rz_func = transforms.Resize(self.loadSize) aug_func = transforms.Lambda(lambda x: data_augment(x, self.aug_config)) self.train_transform = transforms.Compose([ rz_func, aug_func, crop_func, flip_func, transforms.ToTensor(), transforms.Normalize(mean=self.mean, std=self.std), ]) self.test_transform = transforms.Compose([ rz_func, crop_func, transforms.ToTensor(), transforms.Normalize(mean=self.mean, std=self.std), ]) def forward(self, x, return_feat=False): feat = self.clip.get_image_features(x) out = self.fc(feat) if return_feat: return feat, out return out def save_weights(self, weights_path): save_params = {"fc.weight": self.fc.weight.cpu(), "fc.bias": self.fc.bias.cpu()} torch.save(save_params, weights_path) def load_weights(self, weights_path): weights = torch.load(weights_path) self.fc.weight.data = weights["fc.weight"] self.fc.bias.data = weights["fc.bias"]