import os import gradio as gr from openai import OpenAI title = None # "ServiceNow-AI Chat" # modelConfig.get('MODE_DISPLAY_NAME') description = None model_config = { "MODEL_NAME": os.environ.get("MODEL_NAME"), "MODE_DISPLAY_NAME": os.environ.get("MODE_DISPLAY_NAME"), "MODEL_HF_URL": os.environ.get("MODEL_HF_URL"), "VLLM_API_URL": os.environ.get("VLLM_API_URL"), "AUTH_TOKEN": os.environ.get("AUTH_TOKEN") } # Initialize the OpenAI client with the vLLM API URL and token client = OpenAI( api_key=model_config.get('AUTH_TOKEN'), base_url=model_config.get('VLLM_API_URL') ) def chat_fn(message, history): # Remove any assistant messages with metadata from history print(f"Original History: {history}") history = [item for item in history if not (isinstance(item, dict) and item.get("role") == "assistant" and isinstance(item.get("metadata"), dict) and item.get("metadata", {}).get("title") is not None)] print(f"Updated History: {history}") messages = history + [{"role": "user", "content": message}] print(f"Messages: {messages}") # Create the streaming response stream = client.chat.completions.create( model=model_config.get('MODEL_NAME'), messages=messages, temperature=0.8, stream=True ) history.append(gr.ChatMessage( role="assistant", content="Thinking...", metadata={"title": "🧠 Thought"} )) output = "" completion_started = False for chunk in stream: # Extract the new content from the delta field content = getattr(chunk.choices[0].delta, "content", "") output += content parts = output.split("[BEGIN FINAL RESPONSE]") if len(parts) > 1: if parts[1].endswith("[END FINAL RESPONSE]"): parts[1] = parts[1].replace("[END FINAL RESPONSE]", "") if parts[1].endswith("[END FINAL RESPONSE]\n<|end|>"): parts[1] = parts[1].replace("[END FINAL RESPONSE]\n<|end|>", "") history[-1 if not completion_started else -2] = gr.ChatMessage( role="assistant", content=parts[0], metadata={"title": "🧠 Thought"} ) if completion_started: history[-1] = gr.ChatMessage( role="assistant", content=parts[1] ) elif len(parts) > 1 and not completion_started: completion_started = True history.append(gr.ChatMessage( role="assistant", content=parts[1] )) # only yield the most recent assistant messages messages_to_yield = history[-1:] if not completion_started else history[-2:] yield messages_to_yield # Add the model display name and Hugging Face URL to the description # description = f"### Model: [{MODE_DISPLAY_NAME}]({MODEL_HF_URL})" print(f"Running model {model_config.get('MODE_DISPLAY_NAME')} ({model_config.get('MODEL_NAME')})") gr.ChatInterface( chat_fn, title=title, description=description, theme=gr.themes.Default(primary_hue="green"), type="messages", ).launch()