Spaces:
Runtime error
Runtime error
File size: 78,596 Bytes
385e83f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 |
# -*- coding: utf-8 -*-
"""Vizuara BioGPT from Scratch.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1ys-b99GalAtTE9m7bGwCCACZYv2M8HjO
#Vizuara AI Labs: BioGPT Pre-training + Finetuning
## Part 1: Pre-training
### 1.1 Loading the dataset
"""
# Colab: Download ~10 GB (uncompressed) of PubMed baseline XML
import os, re, subprocess, math, requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin
BASE_URL = "https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/"
TARGET_UNCOMPRESSED_GB = 1.0
DEST = "/content/pubmed_xml_subset"
os.makedirs(DEST, exist_ok=True)
# 1) Fetch list of .gz files from the baseline index
html = requests.get(BASE_URL, timeout=60).text
soup = BeautifulSoup(html, "html.parser")
# All .gz files (e.g., pubmed24n0001.xml.gz)
hrefs = [a.get("href") for a in soup.find_all("a", href=True)]
gz_files = sorted([h for h in hrefs if h.endswith(".gz")])
print(f"Found {len(gz_files)} .gz files on the baseline index.")
# 2) Download sequentially until uncompressed total β target
def gz_uncompressed_bytes(local_path):
# Use gzip -l to read uncompressed size from footer (fast; no full decompress)
out = subprocess.check_output(["gzip", "-l", local_path]).decode()
# The second line has: compressed uncompressed ratio uncompressed_name
lines = out.strip().splitlines()
if len(lines) >= 2:
parts = re.split(r"\s+", lines[1].strip())
# parts[1] = uncompressed bytes
return int(parts[1])
return 0
total_uncompressed = 0
downloaded = []
for fname in gz_files:
url = urljoin(BASE_URL, fname)
local = os.path.join(DEST, fname)
if not os.path.exists(local):
print(f"β downloading {fname} ...")
# quiet, continue on partial, retry a bit
ret = subprocess.call(["wget", "-q", "-c", "-O", local, url])
if ret != 0:
print(f" ! failed: {fname}; skipping")
if os.path.exists(local): os.remove(local)
continue
# read uncompressed size
try:
ub = gz_uncompressed_bytes(local)
total_uncompressed += ub
downloaded.append((fname, ub))
print(f" added {fname}: {ub/1e9:.3f} GB uncompressed | total β {total_uncompressed/1e9:.3f} GB")
except Exception as e:
print(f" ! could not read size for {fname}: {e}")
if total_uncompressed >= TARGET_UNCOMPRESSED_GB * 1e9:
print("\nTarget reached. Stopping downloads.")
break
print(f"\nDone. Saved {len(downloaded)} files to: {DEST}")
print(f"Approx. uncompressed total: {total_uncompressed/1e9:.3f} GB")
"""### 1.2 Converting title and abstract from XML to TXT"""
# Colab cell: Parse title + abstract to plain text (one doc/line)
import os, gzip, glob
from lxml import etree
from tqdm import tqdm
SRC_DIR = "/content/pubmed_xml_subset" # where your .xml.gz files are
OUT_DIR = "/content/pubmed_txt" # output folder
os.makedirs(OUT_DIR, exist_ok=True)
train_path = f"{OUT_DIR}/train.txt"
valid_path = f"{OUT_DIR}/valid.txt"
test_path = f"{OUT_DIR}/test.txt"
# ----- helper: stream-parse one PubMed file -----
def yield_title_abstract(fp):
# iterparse to avoid loading whole XML into RAM
ctx = etree.iterparse(gzip.open(fp), events=("end",), tag="PubmedArticle")
for _, elem in ctx:
# Title
t = elem.find(".//ArticleTitle")
title = (t.text or "").strip() if t is not None else ""
# Abstract may have multiple parts <AbstractText>
abs_nodes = elem.findall(".//AbstractText")
abs_parts = []
for a in abs_nodes:
txt = (a.text or "").strip()
if txt:
abs_parts.append(txt)
abstract = " ".join(abs_parts).strip()
if title and abstract:
text = f"{title}. {abstract}"
# clean newlines/tabs
text = " ".join(text.split())
yield text
# free memory
elem.clear()
while elem.getprevious() is not None:
del elem.getparent()[0]
del ctx
# ----- collect and write -----
gz_files = sorted(glob.glob(os.path.join(SRC_DIR, "*.xml.gz")))
print(f"Found {len(gz_files)} gz files")
# We'll stream all docs, then do a simple split by count.
all_out = f"{OUT_DIR}/_all.txt"
with open(all_out, "w", encoding="utf-8") as out:
for fp in tqdm(gz_files, desc="Parsing"):
for line in yield_title_abstract(fp):
out.write(line + "\n")
# Quick stats
num_lines = sum(1 for _ in open(all_out, "r", encoding="utf-8"))
print("Total docs with title+abstract:", num_lines)
# Split 98% / 1% / 1% (adjust if you like)
train_n = int(num_lines * 0.98)
valid_n = int(num_lines * 0.01)
test_n = num_lines - train_n - valid_n
with open(all_out, "r", encoding="utf-8") as fin, \
open(train_path, "w", encoding="utf-8") as ftr, \
open(valid_path, "w", encoding="utf-8") as fva, \
open(test_path, "w", encoding="utf-8") as fte:
for i, line in enumerate(fin):
if i < train_n: ftr.write(line)
elif i < train_n + valid_n: fva.write(line)
else: fte.write(line)
print("Wrote:")
print(" ", train_path)
print(" ", valid_path)
print(" ", test_path)
# Commented out IPython magic to ensure Python compatibility.
# Colab cell: Install tools
!pip -q install sacremoses==0.0.53
!sudo apt-get -y install g++ >/dev/null
# fastBPE (build once)
!git clone -q https://github.com/glample/fastBPE.git /content/fastBPE
# %cd /content/fastBPE
!g++ -std=c++11 -O3 -pthread fastBPE/main.cc -IfastBPE -o fast
# %cd /content
# fairseq (0.12.0 recommended for GPT2-medium arch flag)
!git clone -q https://github.com/pytorch/fairseq.git /content/fairseq
# %cd /content/fairseq
!git checkout v0.12.0 -q
!pip -q install .
# %cd /content
"""### 1.3 Fetch the BioGPT Vocabulary and merged tokens"""
# Colab cell: Grab BioGPT bpecodes/dict
!wget -q -O /content/bpecodes https://raw.githubusercontent.com/microsoft/BioGPT/main/data/BioGPT/bpecodes
!wget -q -O /content/dict.txt https://raw.githubusercontent.com/microsoft/BioGPT/main/data/BioGPT/dict.txt
!wc -l /content/dict.txt && head -n 5 /content/dict.txt
"""### 1.4 Use Moses tokenizer to clean text before applying BPE"""
import os
from sacremoses import MosesTokenizer
from tqdm.auto import tqdm
TXT_DIR = "/content/pubmed_txt"
BPE_DIR = "/content/pubmed_bpe"
os.makedirs(BPE_DIR, exist_ok=True)
mt = MosesTokenizer(lang="en")
def tokenize_file(in_path, out_path, show_progress=True):
# Count lines once for a nice total
with open(in_path, "r", encoding="utf-8") as f:
total = sum(1 for _ in f)
with open(in_path, "r", encoding="utf-8") as fin, \
open(out_path, "w", encoding="utf-8") as fout:
iterator = fin
if show_progress:
iterator = tqdm(fin, total=total, desc=f"Tokenizing {os.path.basename(in_path)}")
for line in iterator:
line = line.strip()
if not line:
continue
fout.write(mt.tokenize(line, return_str=True) + "\n")
for split in ["train", "valid", "test"]:
tok = f"{BPE_DIR}/{split}.tok"
bpe = f"{BPE_DIR}/{split}.bpe"
tokenize_file(f"{TXT_DIR}/{split}.txt", tok)
"""### 1.5 Apply BPE to dataset"""
# Commented out IPython magic to ensure Python compatibility.
import os, math, subprocess, numpy as np, shutil
from tqdm.auto import tqdm
BPE_CODES = "/content/bpecodes" # BioGPT bpecodes
DICT_TXT = "/content/dict.txt" # BioGPT dict
BPE_DIR = "/content/pubmed_bpe" # where your .tok files are
BIN_DIR = "/content/pubmed_memmap"
TMP_DIR = "/content/_bpe_tmp"
os.makedirs(BIN_DIR, exist_ok=True)
os.makedirs(TMP_DIR, exist_ok=True)
# --- load vocab ---
token2id = {}
with open(DICT_TXT, encoding="utf-8") as f:
for i, line in enumerate(f):
tok = line.split()[0]
token2id[tok] = i
# choose a fallback id ONLY IF we see OOVs later
fallback_id = token2id.get("</s>", next(iter(token2id.values()))) # prefer EOS, else first token
# --- ensure fastBPE binary exists ---
if not os.path.exists("/content/fastBPE/fast"):
!git clone -q https://github.com/glample/fastBPE.git /content/fastBPE
# %cd /content/fastBPE
!g++ -std=c++11 -O3 -pthread fastBPE/main.cc -IfastBPE -o fast
# %cd /content
def line_count(path):
c = 0
with open(path, encoding="utf-8") as f:
for _ in f:
c += 1
return c
def apply_bpe_with_progress(tok_file, bpe_file, shards=50):
total_lines = line_count(tok_file)
if total_lines == 0:
open(bpe_file, "w").close()
return
shards = max(1, min(shards, total_lines))
lines_per = math.ceil(total_lines / shards)
split_dir = os.path.join(TMP_DIR, "split")
out_dir = os.path.join(TMP_DIR, "bpe_parts")
os.makedirs(split_dir, exist_ok=True)
os.makedirs(out_dir, exist_ok=True)
# 1) split with progress
with open(tok_file, encoding="utf-8") as fin:
shard_idx = 0
line_idx = 0
fout = None
pbar = tqdm(total=total_lines, desc=f"Splitting {os.path.basename(tok_file)}")
for line in fin:
if line_idx % lines_per == 0:
if fout: fout.close()
shard_idx += 1
fout = open(os.path.join(split_dir, f"part_{shard_idx:05d}.tok"), "w", encoding="utf-8")
fout.write(line)
line_idx += 1
pbar.update(1)
if fout: fout.close()
pbar.close()
# 2) BPE on each shard with progress
parts = sorted([p for p in os.listdir(split_dir) if p.endswith(".tok")])
for p in tqdm(parts, desc="Applying BPE to shards"):
src = os.path.join(split_dir, p)
dst = os.path.join(out_dir, p.replace(".tok", ".bpe"))
subprocess.check_call(["/content/fastBPE/fast", "applybpe", dst, src, BPE_CODES])
# 3) concat with progress
with open(bpe_file, "w", encoding="utf-8") as fout:
for p in tqdm(parts, desc="Concatenating BPE shards"):
src = os.path.join(out_dir, p.replace(".tok", ".bpe"))
with open(src, encoding="utf-8") as fin:
shutil.copyfileobj(fin, fout)
shutil.rmtree(split_dir, ignore_errors=True)
shutil.rmtree(out_dir, ignore_errors=True)
def make_bin(split, dtype=np.uint16, shards=64):
tok_file = os.path.join(BPE_DIR, f"{split}.tok")
bpe_file = os.path.join(BPE_DIR, f"{split}.bpe")
print(f"\n[{split}] Step 1: Applying BPE merges with progress...")
apply_bpe_with_progress(tok_file, bpe_file, shards=shards)
print(f"[{split}] Step 2: Counting total tokens...")
total_tokens, total_lines = 0, 0
with open(bpe_file, encoding="utf-8") as f:
for line in tqdm(f, desc="Counting tokens"):
total_tokens += len(line.strip().split())
total_lines += 1
print(f"[{split}] Total tokens: {total_tokens:,} | lines: {total_lines:,}")
print(f"[{split}] Step 3: Encoding to IDs & writing memmap...")
bin_path = os.path.join(BIN_DIR, f"{split}.bin")
arr = np.memmap(bin_path, dtype=dtype, mode="w+", shape=(total_tokens,))
idx = 0
oov_count = 0
oov_samples = {}
with open(bpe_file, encoding="utf-8") as f:
for line in tqdm(f, total=total_lines, desc=f"Encoding {split}"):
toks = line.strip().split()
ids = []
for t in toks:
if t in token2id:
ids.append(token2id[t])
else:
oov_count += 1
if len(oov_samples) < 10:
oov_samples[t] = oov_samples.get(t, 0) + 1
ids.append(fallback_id) # safe fallback if any OOVs occur
n = len(ids)
arr[idx:idx+n] = np.fromiter(ids, dtype=dtype, count=n)
idx += n
arr.flush()
if oov_count == 0:
print(f"[{split}] β
Saved {bin_path} (no OOVs)")
else:
print(f"[{split}] β οΈ Saved {bin_path} with {oov_count} OOV tokens mapped to id {fallback_id}.")
print(" First few OOV examples:", list(oov_samples.items()))
for split in ["train", "valid", "test"]:
make_bin(split, dtype=np.uint16, shards=64)
"""### 1.6 Create input-output pairs"""
import os, numpy as np, torch
BIN_ROOT = "/content/pubmed_memmap" # where your .bin files are
DTYPE = np.uint16 # you saved with uint16
def get_batch(split):
fname = "train.bin" if split == "train" else "valid.bin"
path = os.path.join(BIN_ROOT, fname)
data = np.memmap(path, dtype=DTYPE, mode='r')
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([torch.from_numpy(data[i:i+block_size].astype(np.int64)) for i in ix])
y = torch.stack([torch.from_numpy(data[i+1:i+1+block_size].astype(np.int64)) for i in ix])
if device_type == 'cuda':
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
else:
x, y = x.to(device), y.to(device)
return x, y
"""### 1.7 Define BioGPT architecture"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from dataclasses import dataclass
import numpy as np
from tqdm.auto import tqdm
from contextlib import nullcontext
import os
class LayerNorm(nn.Module):
def __init__(self, ndim, bias):
super().__init__()
self.weight = nn.Parameter(torch.ones(ndim))
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
def forward(self, x):
return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5)
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.flash = hasattr(F, 'scaled_dot_product_attention')
if not self.flash:
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
if self.flash:
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_dropout.p if self.training else 0.0, is_causal=True)
else:
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
return self.dropout(self.c_proj(self.gelu(self.c_fc(x))))
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln1 = LayerNorm(config.n_embd, config.bias)
self.attn = CausalSelfAttention(config)
self.ln2 = LayerNorm(config.n_embd, config.bias)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x
@dataclass
class GPTConfig:
block_size: int
vocab_size: int
n_layer: int
n_head: int
n_embd: int
dropout: float = 0.0
bias: bool = True
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
drop=nn.Dropout(config.dropout),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=LayerNorm(config.n_embd, config.bias),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight # weight tying
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer))
def _init_weights(self, module):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size
pos = torch.arange(0, t, dtype=torch.long, device=device)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
if targets is not None:
logits = self.lm_head(x)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return logits, loss
else:
logits = self.lm_head(x[:, [-1], :])
return logits, None
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Generate tokens given a conditioning sequence.
idx: Tensor of shape (B, T)
"""
for _ in range(max_new_tokens):
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :] / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
vocab_size = sum(1 for _ in open("/content/dict.txt", encoding="utf-8"))
print("Vocab size:", vocab_size) # should be ~42380
"""### 1.8 Define configuration"""
# Pick GPU if available, else CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
# Optional: keep track of the type for AMP autocast
device_type = 'cuda' if device == 'cuda' else 'cpu'
# Now build the config
vocab_size = sum(1 for _ in open("/content/dict.txt", encoding="utf-8"))
config = GPTConfig(
vocab_size=vocab_size,
block_size=128, # or 1024 for BioGPT-scale training
n_layer=6, # change to 24 for BioGPT-size
n_head=6, # change to 16 for BioGPT-size
n_embd=384, # change to 1024 for BioGPT-size
dropout=0.1,
bias=True
)
# Create model and move to device
model = GPT(config).to(device)
print("Params (M):", sum(p.numel() for p in model.parameters())/1e6)
print(vocab_size)
"""### 1.9 Define loss function"""
def estimate_loss(model):
out = {}
model.eval()
with torch.inference_mode():
for split in ['train', 'valid']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
with ctx:
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
"""### 1.10 Define the training configuration"""
# Training Config
import torch
from contextlib import nullcontext
learning_rate = 1e-4 #more stable training, earlier 1e-4
max_iters = 120000 #increase from 25000
warmup_steps = 1000 #smoother initial train, earlier 100
min_lr = 5e-4 #lower rate, earlier 5e-4
eval_iters = 500 # increased from 100
batch_size = 32 # changed from 16, better gradient estimate
block_size = 128 #changed from 64, capture longer range dependencies
gradient_accumulation_steps = 32 # reduced from 50
device = "cuda" if torch.cuda.is_available() else "cpu"
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
# note: float16 data type will automatically use a GradScaler
# How to use autocast https://wandb.ai/wandb_fc/tips/reports/How-To-Use-Autocast-in-PyTorch--VmlldzoyMTk4NTky
#dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
torch.set_default_device(device)
torch.manual_seed(42)
"""### 1.11 Define optimizers and learning rate"""
from torch.optim.lr_scheduler import LinearLR,SequentialLR, CosineAnnealingLR
##PUT IN WEIGHT DECAY, CHANGED BETA2 to 0.95
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, betas=(0.9, 0.95), weight_decay=0.1, eps=1e-9) #weight decay for regularization
scheduler_warmup = LinearLR(optimizer, total_iters = warmup_steps) #Implement linear warmup
scheduler_decay = CosineAnnealingLR(optimizer,T_max = max_iters - warmup_steps, eta_min = min_lr) #Implement lr decay
scheduler = SequentialLR(optimizer, schedulers=[scheduler_warmup, scheduler_decay], milestones=[warmup_steps]) #Switching from warmup to decay
# https://stackoverflow.com/questions/72534859/is-gradscaler-necessary-with-mixed-precision-training-with-pytorch
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
"""### 1.12 Run pre-training!"""
best_val_loss = float('inf')
best_model_params_path = "best_model_params.pt"
train_loss_list, validation_loss_list = [], []
# Ensure model is on the correct device
model = model.to(device)
# In your training loop
for epoch in tqdm(range(max_iters)):
if epoch % eval_iters == 0 and epoch != 0:
# Ensure estimate_loss uses the correct device
losses = estimate_loss(model)
print(f"Epoch {epoch}: train loss {losses['train']:.4f}, val loss {losses['valid']:.4f}")
print(f"The current learning rate: {optimizer.param_groups[0]['lr']:.5f}")
train_loss_list += [losses['train']]
validation_loss_list += [losses['valid']]
if losses['valid'] < best_val_loss:
best_val_loss = losses['valid']
torch.save(model.state_dict(), best_model_params_path)
# Ensure X and y are on the correct device
X, y = get_batch("train")
X, y = X.to(device), y.to(device)
with ctx:
logits, loss = model(X, y)
loss = loss / gradient_accumulation_steps
scaler.scale(loss).backward()
if ((epoch + 1) % gradient_accumulation_steps == 0) or (epoch + 1 == max_iters):
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.5)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
scheduler.step()
"""### 1.13 Plot training and validation losses"""
import matplotlib.pyplot as plt
import numpy as np
eval_every = eval_iters # e.g., 500
# Convert each tensor to float on CPU
train_loss_np = [float(t.cpu()) for t in train_loss_list]
valid_loss_np = [float(t.cpu()) for t in validation_loss_list]
steps = np.arange(1, len(train_loss_np) + 1) * eval_every
plt.figure(figsize=(6,4))
plt.plot(steps, train_loss_np, label='train')
plt.plot(steps, valid_loss_np, label='valid')
plt.xlabel('Iteration')
plt.ylabel('Loss')
plt.title('Pretraining loss')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()
import torch
ckpt_path = "best_model_params.pt" # you saved this in the loop
model.load_state_dict(torch.load(ckpt_path, map_location=device))
model.eval()
"""### 1.14 Evaluation on HoC Part 1 (the Hallmarks of Cancers corpus) classification dataset"""
import os
import pandas as pd
from datasets import load_dataset
from tqdm.auto import tqdm
def download_and_save_hoc_splits(target_dir="/content/hoc"):
"""
Downloads the bigbio/hallmarks_of_cancer dataset from Hugging Face,
formats it, and saves it as train.tsv, valid.tsv, and test.tsv
in the specified directory.
Args:
target_dir (str): The directory to save the .tsv files.
"""
print("Downloading bigbio/hallmarks_of_cancer dataset...")
try:
# Load the dataset splits
train_data = load_dataset("bigbio/hallmarks_of_cancer", split="train")
valid_data = load_dataset("bigbio/hallmarks_of_cancer", split="validation")
test_data = load_dataset("bigbio/hallmarks_of_cancer", split="test")
print("Dataset downloaded successfully.")
except Exception as e:
print(f"Error downloading dataset: {e}")
print("Please ensure you have internet access and the 'datasets' library is installed (`pip install datasets`).")
return
os.makedirs(target_dir, exist_ok=True)
print(f"Ensured target directory exists: {target_dir}")
splits = {
"train": train_data,
"valid": valid_data,
"test": test_data,
}
for split_name, dataset in splits.items():
output_path = os.path.join(target_dir, f"{split_name}.tsv")
print(f"Processing '{split_name}' split and saving to {output_path}...")
processed_data = []
# Iterate with tqdm for progress bar
for item in tqdm(dataset, desc=f"Processing {split_name}", leave=False):
text = item.get("text", "")
labels_list = item.get("labels", [])
# Handle the [' none '] case and join the list into a string
# Using '; ' as a separator, similar to how multi-label strings might appear
if labels_list == [' none '] or not labels_list:
label_str = "" # Represent 'none' or empty list as an empty string
else:
# Filter out ' none ' if mixed with others, though unlikely based on dataset viewer
valid_labels = [lbl for lbl in labels_list if lbl.strip().lower() != 'none']
label_str = "; ".join(valid_labels) # Join valid labels with a separator
# Append as a dictionary for easy DataFrame creation later
# Replace tabs and newlines in text to avoid breaking TSV format
cleaned_text = " ".join(text.split())
processed_data.append({"text": cleaned_text, "label": label_str})
# Convert to DataFrame and save as TSV
if processed_data:
df = pd.DataFrame(processed_data)
# Ensure columns are in the order expected by load_hoc_tsv heuristic (text, label)
df = df[["text", "label"]]
df.to_csv(output_path, sep="\t", index=False, header=False) # Save without index and header
print(f"Successfully saved {output_path}")
else:
print(f"No data processed for split '{split_name}'.")
print("\nDataset processing complete.")
# Commented out IPython magic to ensure Python compatibility.
# ===== Zero-shot HoC evaluation for your PRE-TRAINED GPT (with cue + EOS delay) =====
# Uses your existing GPT / GPTConfig and loads ckpt_path="best_model_params.pt"
# installs
!pip -q install sacremoses==0.0.53 scikit-learn==1.5.1
import os, math, difflib, tempfile, subprocess
import numpy as np
import pandas as pd
from tqdm.auto import tqdm
import torch
import torch.nn.functional as F
from sklearn.metrics import precision_recall_fscore_support
from sacremoses import MosesDetokenizer
# ---------- paths ----------
HOC_DIR = "/content/hoc"
download_and_save_hoc_splits(HOC_DIR) # train.tsv / valid.tsv / test.tsv live here
BPE_CODES = "/content/bpecodes" # from BioGPT
DICT_TXT = "/content/dict.txt" # from BioGPT
FASTBPE_BIN = "/content/fastBPE/fast" # compiled earlier
ckpt_path = ckpt_path if 'ckpt_path' in globals() else "best_model_params.pt"
os.makedirs(HOC_DIR, exist_ok=True)
# ---------- ensure fastBPE + BioGPT codes/dict ----------
if not os.path.exists(FASTBPE_BIN):
!git clone -q https://github.com/glample/fastBPE.git /content/fastBPE
# %cd /content/fastBPE
!g++ -std=c++11 -O3 -pthread fastBPE/main.cc -IfastBPE -o fast
# %cd /content
if not os.path.exists(BPE_CODES):
!wget -q -O /content/bpecodes https://raw.githubusercontent.com/microsoft/BioGPT/main/data/BioGPT/bpecodes
if not os.path.exists(DICT_TXT):
!wget -q -O /content/dict.txt https://raw.githubusercontent.com/microsoft/BioGPT/main/data/BioGPT/dict.txt
# ---------- vocab maps ----------
token2id, id2token = {}, {}
with open(DICT_TXT, encoding="utf-8") as f:
for i, line in enumerate(f):
tok = line.split()[0]
token2id[tok] = i
id2token[i] = tok
eos_id = token2id.get("</s>", 0)
pad_id = eos_id # safe pad; loss is masked anyway
# ---------- BPE helpers ----------
def bpe_encode_lines(lines, shard_size=2000, desc="BPE"):
if len(lines) == 0:
return []
out = []
with tempfile.TemporaryDirectory() as td:
for start in tqdm(range(0, len(lines), shard_size), desc=f"{desc} ({len(lines)} lines)", leave=False):
chunk = lines[start:start+shard_size]
src = os.path.join(td, f"src_{start}.txt")
dst = os.path.join(td, f"dst_{start}.bpe")
with open(src, "w", encoding="utf-8") as w:
for s in chunk: w.write((s or "").strip() + "\n")
subprocess.check_call([FASTBPE_BIN, "applybpe", dst, src, BPE_CODES])
with open(dst, "r", encoding="utf-8") as r:
for line in r:
out.append(line.strip().split())
return out
def tokens_to_ids(bpe_tokens):
ids = []
for t in bpe_tokens:
ids.append(token2id.get(t, pad_id))
return ids, 0
def bpe_decode_tokens(bpe_tokens):
s = ' '.join(bpe_tokens).replace('@@ ', '')
return MosesDetokenizer(lang='en').detokenize(s.split())
# ---------- load HoC test ----------
def load_hoc_tsv(path):
df = pd.read_csv(path, sep="\t", header=None, dtype=str).fillna("")
assert df.shape[1] == 2, f"{path} must have 2 columns"
avg0, avg1 = df[0].astype(str).str.len().mean(), df[1].astype(str).str.len().mean()
df.columns = ["text","label"] if avg0 > avg1 else ["label","text"]
return df
test_path = os.path.join(HOC_DIR, "test.tsv")
assert os.path.exists(test_path), f"Missing {test_path}"
test_df = load_hoc_tsv(test_path)
print("Test size:", len(test_df))
# ---------- the 10 Hallmarks (no 'empty') ----------
HALLMARKS = [
"activating invasion and metastasis",
"avoiding immune destruction",
"cellular energetics",
"enabling replicative immortality",
"evading growth suppressors",
"genomic instability and mutation",
"inducing angiogenesis",
"resisting cell death",
"sustaining proliferative signaling",
"tumor promoting inflammation",
]
def split_labels(s: str):
s = (s or "").strip()
if not s: return []
for sep in [",",";","|"]:
if sep in s:
return [p.strip() for p in s.split(sep) if p.strip()]
return [s]
def normalize_labels(labs):
keep, low = [], [L.lower() for L in HALLMARKS]
for x in labs:
xl = x.lower().strip()
if xl in low:
keep.append(HALLMARKS[low.index(xl)])
else:
best = difflib.get_close_matches(xl, low, n=1, cutoff=0.7)
if best:
keep.append(HALLMARKS[low.index(best[0])])
return sorted(dict.fromkeys(keep))
# ---------- Build allowed-token mask (labels + separators + </s>) & first-step forbids ----------
def build_allowed_mask_and_first_forbid(vocab_size, device):
allowed = set()
sep_ids = set()
# Hallmark tokens (all tokens that appear in these strings)
for bpe in bpe_encode_lines(HALLMARKS, desc="BPE hallmarks"):
ids, _ = tokens_to_ids(bpe); allowed.update(ids)
# Separators; we also record their token ids to block at the first step
SEPS = [", ", ",", "; ", ";", "|", " and "]
for sep in SEPS:
bpe = bpe_encode_lines([sep], desc="BPE seps")[0]
ids, _ = tokens_to_ids(bpe)
allowed.update(ids)
sep_ids.update(ids)
allowed.add(eos_id)
mask = torch.full((vocab_size,), float('-inf'), device=device)
mask[list(allowed)] = 0.0
first_forbid = torch.zeros((vocab_size,), dtype=torch.bool, device=device)
first_forbid[list(sep_ids)] = True
first_forbid[eos_id] = True # never allow EOS as the first generated token
return mask, first_forbid
device = "cuda" if torch.cuda.is_available() else "cpu"
ALLOWED_MASK, FIRST_STEP_FORBID = build_allowed_mask_and_first_forbid(len(token2id), device)
# ---------- Build contexts (text </s> + textual cue) ----------
PROMPT_TEXT = " hallmarks of cancer:" # small cue after abstract
PROMPT_BPE = bpe_encode_lines([PROMPT_TEXT], desc="BPE prompt")[0]
PROMPT_IDS, _ = tokens_to_ids(PROMPT_BPE)
def make_context_with_prompt(df):
texts = df["text"].astype(str).tolist()
bpes = bpe_encode_lines(texts, desc="BPE test ctx")
ctx = []
for bpe in bpes:
ids, _ = tokens_to_ids(bpe)
ctx.append(np.array(ids + [eos_id] + PROMPT_IDS, dtype=np.int64))
return ctx
def pad_batch(seqs):
L = max(len(s) for s in seqs)
out = np.full((len(seqs), L), pad_id, dtype=np.int64)
for i, s in enumerate(seqs):
out[i, :len(s)] = s
return torch.from_numpy(out)
def ids_to_tokens(ids):
return [id2token.get(int(i), "<unk>") for i in ids]
def to_canonical(pred_chunk: str):
s = (pred_chunk or "").strip().lower()
low = [L.lower() for L in HALLMARKS]
if s in low: return HALLMARKS[low.index(s)]
best = difflib.get_close_matches(s, low, n=1, cutoff=0.7)
return HALLMARKS[low.index(best[0])] if best else None
# ---------- Require your GPT & GPTConfig from pretraining ----------
assert 'GPT' in globals(), "Please define your GPT class (same as pretraining) before running this cell."
assert 'GPTConfig' in globals(), "Please ensure GPTConfig is defined."
cfg = GPTConfig(
vocab_size=len(token2id),
block_size=(config.block_size if 'config' in globals() else 128),
n_layer=(config.n_layer if 'config' in globals() else 6),
n_head=(config.n_head if 'config' in globals() else 6),
n_embd=(config.n_embd if 'config' in globals() else 384),
dropout=(config.dropout if 'config' in globals() else 0.1),
bias=(config.bias if 'config' in globals() else True),
)
base = GPT(cfg).to(device)
# safe WPE resize when loading the checkpoint
def load_with_wpe_resize(model, ckpt_path):
sd = torch.load(ckpt_path, map_location="cpu")
key = "transformer.wpe.weight"
if key in sd:
old = sd[key]
new_w = model.transformer.wpe.weight
new_len = new_w.shape[0]
if old.shape[0] != new_len:
new = new_w.data.clone()
n = min(new_len, old.shape[0])
new[:n] = old[:n]
if new_len > n:
torch.nn.init.normal_(new[n:], mean=0.0, std=0.02)
sd[key] = new
missing, unexpected = base.load_state_dict(sd, strict=False)
if missing or unexpected:
print("Missing keys:", missing)
print("Loaded PRETRAINED checkpoint:", ckpt_path)
assert os.path.exists(ckpt_path), f"Checkpoint not found: {ckpt_path}"
load_with_wpe_resize(base, ckpt_path)
base.eval()
# ---------- Constrained greedy decode with cue + EOS delay ----------
@torch.no_grad()
def gpt_generate_with_cue(model, idx, allowed_mask, first_step_forbid,
max_new_tokens=24, min_new_before_eos=2, eos_penalty=-2.0, temperature=0.0):
"""
- Restrict vocabulary with `allowed_mask`
- For the very first generated token, forbid separators + EOS
- For the first `min_new_before_eos` tokens, disallow EOS entirely
- After that, add a small penalty to EOS (so it doesn't end too early)
"""
out = idx.clone()
B = out.size(0)
finished = torch.zeros(B, dtype=torch.bool, device=out.device)
steps = 0
for _ in range(max_new_tokens):
ctx = out[:, -model.config.block_size:]
logits, _ = model(ctx) # (B,1,V)
logits = logits[:, -1, :] # (B,V)
# restrict to label vocab
logits = logits + allowed_mask
# first token: block separators + EOS
if steps == 0:
logits[:, first_step_forbid] = -1e9
# delay EOS for a couple steps, then mildly penalize
if steps < min_new_before_eos:
logits[:, eos_id] = -1e9
else:
logits[:, eos_id] += eos_penalty
# pick next
if temperature <= 0:
next_id = torch.argmax(logits, dim=-1)
else:
probs = F.softmax(logits / temperature, dim=-1)
next_id = torch.multinomial(probs, num_samples=1).squeeze(1)
next_id = next_id.masked_fill(finished, eos_id)
out = torch.cat([out, next_id.unsqueeze(1)], dim=1)
finished |= (next_id == eos_id)
steps += 1
if bool(finished.all()):
break
return out[:, idx.size(1):]
@torch.no_grad()
def predict_labels_for_batch_generative(xb):
gens = gpt_generate_with_cue(
base, xb, allowed_mask=ALLOWED_MASK, first_step_forbid=FIRST_STEP_FORBID,
max_new_tokens=24, min_new_before_eos=2, eos_penalty=-2.0, temperature=0.0
)
preds = []
for g in gens:
toks = ids_to_tokens(g.detach().cpu().numpy())
toks = toks[: toks.index("</s>")] if "</s>" in toks else toks
label_str = bpe_decode_tokens(toks).strip().lower()
parts = []
for sep in [",",";","|"]:
if sep in label_str:
parts = [p.strip() for p in label_str.split(sep) if p.strip()]
break
if not parts:
parts = [label_str] if label_str else []
mapped = []
for p in parts:
can = to_canonical(p)
if can and can not in mapped:
mapped.append(can)
preds.append(mapped) # may be []
return preds
# ---------- Run decoding on TEST ----------
ctx_test = make_context_with_prompt(test_df)
preds_all = []
B = 32
for i in tqdm(range(0, len(ctx_test), B), desc="Decoding (pretrain+cue, test)"):
xb = pad_batch(ctx_test[i:i+B]).to(device)
preds_all.extend(predict_labels_for_batch_generative(xb))
# ---------- Ground truth & metrics (10 hallmarks only) ----------
y_true = [ normalize_labels(split_labels(s)) for s in test_df["label"].astype(str).tolist() ]
LABELS = HALLMARKS
LIDX = {l:i for i,l in enumerate(LABELS)}
def binarize(labs):
v = [0]*len(LABELS)
for l in labs:
if l in LIDX: v[LIDX[l]] = 1
return v
Y_true = np.array([binarize(l) for l in y_true], dtype=np.int64)
Y_pred = np.array([binarize(l) for l in preds_all], dtype=np.int64)
micro_p, micro_r, micro_f1, _ = precision_recall_fscore_support(Y_true, Y_pred, average='micro', zero_division=0)
macro_p, macro_r, macro_f1, _ = precision_recall_fscore_support(Y_true, Y_pred, average='macro', zero_division=0)
print(f"\n[PRETRAIN+cue] HALLMARKS-ONLY Micro P/R/F1: {micro_p:.4f} / {micro_r:.4f} / {micro_f1:.4f}")
print( f"[PRETRAIN+cue] HALLMARKS-ONLY Macro P/R/F1: {macro_p:.4f} / {macro_r:.4f} / {macro_f1:.4f}")
perclass = precision_recall_fscore_support(Y_true, Y_pred, average=None, zero_division=0)
per_df_pre = pd.DataFrame({
"label": LABELS,
"precision": perclass[0],
"recall": perclass[1],
"f1": perclass[2],
"support": perclass[3],
}).sort_values("label")
print("\nPer-class results (PRETRAIN+cue, 10 hallmarks):")
print(per_df_pre.to_string(index=False))
per_df_pre.to_csv("hoc_test_results_pretrain_cue.csv", index=False)
print("Saved: hoc_test_results_pretrain_cue.csv")
# (optional) exclude empty-label rows from eval:
# mask = (Y_true.sum(axis=1) > 0)
# ... recompute scores on Y_true[mask], Y_pred[mask]
"""### 1.15 Evaluation on HoC Part 2 (the Hallmarks of Cancers corpus) classification dataset"""
# === Show 10 "questions" (abstract + prompt) and the model's answers (pretrained+cue) ===
import os, difflib, numpy as np, pandas as pd, torch, torch.nn.functional as F
from tqdm.auto import tqdm
from sklearn.metrics import precision_recall_fscore_support
# ---- Assumptions / fallbacks ----
HOC_DIR = globals().get("HOC_DIR", "/content/hoc")
ckpt_path = globals().get("ckpt_path", "best_model_params.pt")
device = "cuda" if torch.cuda.is_available() else "cpu"
# Hallmarks (10 classes, no "empty")
HALLMARKS = [
"activating invasion and metastasis",
"avoiding immune destruction",
"cellular energetics",
"enabling replicative immortality",
"evading growth suppressors",
"genomic instability and mutation",
"inducing angiogenesis",
"resisting cell death",
"sustaining proliferative signaling",
"tumor promoting inflammation",
]
# ---------- Helper fallbacks if not defined earlier ----------
def _need(name): return name not in globals()
# TSV loader
if _need("load_hoc_tsv"):
def load_hoc_tsv(path):
df = pd.read_csv(path, sep="\t", header=None, dtype=str).fillna("")
assert df.shape[1] == 2, f"{path} must have 2 columns"
avg0, avg1 = df[0].astype(str).str.len().mean(), df[1].astype(str).str.len().mean()
df.columns = ["text","label"] if avg0 > avg1 else ["label","text"]
return df
# If test_df not in memory, load it
if "test_df" not in globals():
test_df = load_hoc_tsv(os.path.join(HOC_DIR, "test.tsv"))
# Simple label split/normalization utilities
def split_labels(s: str):
s = (s or "").strip()
if not s: return []
for sep in [",",";","|"]:
if sep in s:
return [p.strip() for p in s.split(sep) if p.strip()]
return [s]
def normalize_labels(labs):
keep, low = [], [L.lower() for L in HALLMARKS]
for x in labs:
xl = x.lower().strip()
if xl in low:
keep.append(HALLMARKS[low.index(xl)])
else:
best = difflib.get_close_matches(xl, low, n=1, cutoff=0.7)
if best:
keep.append(HALLMARKS[low.index(best[0])])
# de-dup & stable order
seen, out = set(), []
for k in keep:
if k not in seen:
seen.add(k); out.append(k)
return out
# BPE helpers (must exist: token2id, id2token, bpe_encode_lines, tokens_to_ids, bpe_decode_tokens, eos_id, pad_id)
for req in ["token2id","id2token","bpe_encode_lines","tokens_to_ids","bpe_decode_tokens","eos_id","pad_id"]:
assert req in globals(), f"Missing `{req}` β run the setup cell that defines dict/bpecodes and BPE helpers."
# Build allowed-token mask & first-step forbids if not present
if _need("ALLOWED_MASK") or _need("FIRST_STEP_FORBID"):
def build_allowed_mask_and_first_forbid(vocab_size, device):
allowed = set(); sep_ids = set()
# all tokens that appear in hallmark strings
for bpe in bpe_encode_lines(HALLMARKS, desc="BPE hallmarks"):
ids, _ = tokens_to_ids(bpe); allowed.update(ids)
# separators (also block them on very first generated step)
SEPS = [", ", ",", "; ", ";", "|", " and "]
for sep in SEPS:
bpe = bpe_encode_lines([sep], desc="BPE seps")[0]
ids, _ = tokens_to_ids(bpe); allowed.update(ids); sep_ids.update(ids)
allowed.add(eos_id)
mask = torch.full((vocab_size,), float('-inf'), device=device)
mask[list(allowed)] = 0.0
first_forbid = torch.zeros((vocab_size,), dtype=torch.bool, device=device)
first_forbid[list(sep_ids)] = True
first_forbid[eos_id] = True
return mask, first_forbid
ALLOWED_MASK, FIRST_STEP_FORBID = build_allowed_mask_and_first_forbid(len(token2id), device)
# Prompt (the "question" cue)
PROMPT_TEXT = " hallmarks of cancer:"
PROMPT_BPE = bpe_encode_lines([PROMPT_TEXT], desc="BPE prompt")[0]
PROMPT_IDS, _ = tokens_to_ids(PROMPT_BPE)
# Build contexts with prompt
def make_context_with_prompt(rows):
bpes = bpe_encode_lines(rows["text"].astype(str).tolist(), desc="BPE ctx (sample)")
ctx = []
for bpe in bpes:
ids, _ = tokens_to_ids(bpe)
ctx.append(np.array(ids + [eos_id] + PROMPT_IDS, dtype=np.int64))
return ctx
def pad_batch(seqs):
L = max(len(s) for s in seqs)
out = np.full((len(seqs), L), pad_id, dtype=np.int64)
for i, s in enumerate(seqs):
out[i, :len(s)] = s
return torch.from_numpy(out)
def ids_to_tokens(ids):
return [id2token.get(int(i), "<unk>") for i in ids]
def to_canonical(pred_chunk: str):
s = (pred_chunk or "").strip().lower()
low = [L.lower() for L in HALLMARKS]
if s in low: return HALLMARKS[low.index(s)]
best = difflib.get_close_matches(s, low, n=1, cutoff=0.7)
return HALLMARKS[low.index(best[0])] if best else None
# If the pretrained model (`base`) isnβt loaded yet, load it
if _need("base"):
assert 'GPT' in globals() and 'GPTConfig' in globals(), "Define GPT and GPTConfig first (your pretraining classes)."
assert os.path.exists(ckpt_path), f"Checkpoint not found: {ckpt_path}"
cfg = GPTConfig(
vocab_size=len(token2id),
block_size=(config.block_size if 'config' in globals() else 128),
n_layer=(config.n_layer if 'config' in globals() else 6),
n_head=(config.n_head if 'config' in globals() else 6),
n_embd=(config.n_embd if 'config' in globals() else 384),
dropout=(config.dropout if 'config' in globals() else 0.1),
bias=(config.bias if 'config' in globals() else True),
)
base = GPT(cfg).to(device)
# safe WPE resize
def load_with_wpe_resize(model, path):
sd = torch.load(path, map_location="cpu")
key = "transformer.wpe.weight"
if key in sd:
old = sd[key]
new_w = model.transformer.wpe.weight
new_len = new_w.shape[0]
if old.shape[0] != new_len:
new = new_w.data.clone()
n = min(new_len, old.shape[0])
new[:n] = old[:n]
if new_len > n:
torch.nn.init.normal_(new[n:], mean=0.0, std=0.02)
sd[key] = new
model.load_state_dict(sd, strict=False)
load_with_wpe_resize(base, ckpt_path)
base.eval()
# Constrained generation with cue + EOS delay (define if missing)
if _need("gpt_generate_with_cue"):
@torch.no_grad()
def gpt_generate_with_cue(model, idx, allowed_mask, first_step_forbid,
max_new_tokens=24, min_new_before_eos=2, eos_penalty=-2.0, temperature=0.0):
out = idx.clone()
B = out.size(0)
finished = torch.zeros(B, dtype=torch.bool, device=out.device)
steps = 0
for _ in range(max_new_tokens):
ctx = out[:, -model.config.block_size:]
logits, _ = model(ctx) # (B,1,V)
logits = logits[:, -1, :] # (B,V)
logits = logits + allowed_mask # restrict vocab
if steps == 0:
logits[:, first_step_forbid] = -1e9
if steps < min_new_before_eos:
logits[:, eos_id] = -1e9
else:
logits[:, eos_id] += eos_penalty
if temperature <= 0:
next_id = torch.argmax(logits, dim=-1)
else:
probs = F.softmax(logits / temperature, dim=-1)
next_id = torch.multinomial(probs, num_samples=1).squeeze(1)
next_id = next_id.masked_fill(finished, eos_id)
out = torch.cat([out, next_id.unsqueeze(1)], dim=1)
finished |= (next_id == eos_id)
steps += 1
if bool(finished.all()):
break
return out[:, idx.size(1):]
# ---------- Sample 10 and print Q&A ----------
SAMPLE_N = 10
sample = test_df.sample(n=min(SAMPLE_N, len(test_df)), random_state=42).reset_index(drop=True)
# prepare contexts
ctx = make_context_with_prompt(sample)
B = 10 # single batch is fine here
xb = pad_batch(ctx).to(device)
# generate
gens = gpt_generate_with_cue(
base, xb, allowed_mask=ALLOWED_MASK, first_step_forbid=FIRST_STEP_FORBID,
max_new_tokens=24, min_new_before_eos=2, eos_penalty=-2.0, temperature=0.0
)
# decode + print
for i, g in enumerate(gens):
text = sample.loc[i, "text"]
gold = normalize_labels(split_labels(sample.loc[i, "label"]))
toks = ids_to_tokens(g.detach().cpu().numpy())
toks = toks[: toks.index("</s>")] if "</s>" in toks else toks
raw = ' '.join(toks).replace('@@ ', '').strip().lower()
# split raw into parts and map to canonical labels
parts = []
for sep in [",",";","|"]:
if sep in raw:
parts = [p.strip() for p in raw.split(sep) if p.strip()]
break
if not parts:
parts = [raw] if raw else []
pred = []
for p in parts:
can = to_canonical(p)
if can and can not in pred:
pred.append(can)
print(f"\n=== Example {i+1} ===")
print("QUESTION:")
print("Abstract:", (text.replace("\n"," ")[:350] + ("..." if len(text) > 350 else "")))
print("Prompt: hallmarks of cancer:")
print("GOLD: ", gold if gold else "[]")
print("ANSWER: ", pred if pred else "[]")
print("Raw gen:", raw if raw else "<empty>")
"""## Part 2: Finetuning
### 2.1 Setup: paths + installs
"""
# Commented out IPython magic to ensure Python compatibility.
# --- Setup: paths + installs (run once) ---
!pip -q install sacremoses==0.0.53 scikit-learn==1.5.1
import os, subprocess, json, math, random, difflib, tempfile, shutil
from pathlib import Path
import numpy as np
import pandas as pd
from collections import Counter, defaultdict
import torch, torch.nn as nn, torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.optim.lr_scheduler import LinearLR, SequentialLR, CosineAnnealingLR
from sacremoses import MosesDetokenizer
from tqdm.auto import tqdm # <-- used in BPE w/ progress
# ---- paths ----
HOC_DIR = "/content/hoc" # << put your train/valid/test.tsv here
BPE_CODES = "/content/bpecodes" # from your pre-training cell
DICT_TXT = "/content/dict.txt" # from your pre-training cell
FASTBPE = "/content/fastBPE/fast" # compiled earlier in your notebook
os.makedirs(HOC_DIR, exist_ok=True)
# Ensure fastBPE exists (rebuild if needed)
if not os.path.exists(FASTBPE):
!git clone -q https://github.com/glample/fastBPE.git /content/fastBPE
# %cd /content/fastBPE
!g++ -std=c++11 -O3 -pthread fastBPE/main.cc -IfastBPE -o fast
# %cd /content
# ---- load BioGPT dictionary ----
token2id = {}
id2token = {}
with open(DICT_TXT, encoding="utf-8") as f:
for i, line in enumerate(f):
tok = line.split()[0]
token2id[tok] = i
id2token[i] = tok
# pick special ids
eos_id = token2id.get("</s>", 0)
pad_id = eos_id # safe padding with eos for inputs; we mask loss anyway
# ---- BPE encode/decode helpers (fastBPE uses '@@' continuation) ----
def bpe_encode_lines(lines, shard_size=2000, desc="BPE"):
"""
Progress-enabled BPE encoding using fastBPE, processing in shards.
Returns: list[list[str]] (BPE tokens per line)
"""
if len(lines) == 0:
return []
out_tokens = []
with tempfile.TemporaryDirectory() as td:
for start in tqdm(range(0, len(lines), shard_size), desc=f"{desc} ({len(lines)} lines)", leave=False):
chunk = lines[start:start+shard_size]
src = os.path.join(td, f"src_{start}.txt")
dst = os.path.join(td, f"dst_{start}.bpe")
with open(src, "w", encoding="utf-8") as f:
for s in chunk:
f.write((s or "").strip() + "\n")
subprocess.check_call([FASTBPE, "applybpe", dst, src, BPE_CODES])
with open(dst, "r", encoding="utf-8") as f:
for line in f:
out_tokens.append(line.strip().split())
return out_tokens
def bpe_decode_tokens(bpe_tokens):
"""Merge '@@' continuations and detokenize to plain text (for label decoding)."""
s = ' '.join(bpe_tokens).replace('@@ ', '')
md = MosesDetokenizer(lang='en')
return md.detokenize(s.split())
def tokens_to_ids(bpe_tokens):
ids = []
oov = 0
for t in bpe_tokens:
if t in token2id:
ids.append(token2id[t])
else:
ids.append(pad_id) # unlikely, but safe fallback
oov += 1
return ids, oov
"""### 2.2 Load HoC dataset and map targets to labels"""
# --- Load HoC TSVs (2 columns, no header). Heuristically figure out which is text vs label. ---
def load_hoc_tsv(path):
df = pd.read_csv(path, sep="\t", header=None, dtype=str).fillna("")
assert df.shape[1] == 2, f"Expected 2 columns in {path}, got {df.shape}"
avg0, avg1 = df[0].astype(str).str.len().mean(), df[1].astype(str).str.len().mean()
if avg0 > avg1:
df.columns = ["text", "label"]
else:
df.columns = ["label", "text"]
return df
train_df = load_hoc_tsv(f"{HOC_DIR}/train.tsv")
valid_df = load_hoc_tsv(f"{HOC_DIR}/valid.tsv")
test_df = load_hoc_tsv(f"{HOC_DIR}/test.tsv")
print("Splits:", len(train_df), len(valid_df), len(test_df))
# --- Hallmarks (10 classes; we ignore 'empty' for training and for reporting) ---
HALLMARKS = [
"activating invasion and metastasis",
"avoiding immune destruction",
"cellular energetics",
"enabling replicative immortality",
"evading growth suppressors",
"genomic instability and mutation",
"inducing angiogenesis",
"resisting cell death",
"sustaining proliferative signaling",
"tumor promoting inflammation",
]
def split_labels(s: str):
s = (s or "").strip()
if not s: return []
for sep in [",", ";", "|"]:
if sep in s:
return [p.strip() for p in s.split(sep) if p.strip()]
return [s]
def normalize_labels(labs):
"""Map raw labels (including fuzzy matches) to the 10 hallmarks; drop 'empty'."""
keep = []
low = [L.lower() for L in HALLMARKS]
for x in labs:
x_low = x.lower().strip()
if x_low in low:
keep.append(HALLMARKS[low.index(x_low)])
else:
best = difflib.get_close_matches(x_low, low, n=1, cutoff=0.7)
if best:
keep.append(HALLMARKS[low.index(best[0])])
# dedupe & sort for deterministic target text
return sorted(list(dict.fromkeys(keep)))
def labels_to_target_text(labs):
labs = normalize_labels(labs)
if len(labs) == 0:
return None # -> drop from training if empty-only
return ", ".join(labs)
"""### 2.3 Redefine GPT architecture for full finetuning"""
# --- Your GPT modules (same as in your pretraining code) ---
class LayerNorm(nn.Module):
def __init__(self, ndim, bias):
super().__init__()
self.weight = nn.Parameter(torch.ones(ndim))
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
def forward(self, x):
return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5)
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.flash = hasattr(F, 'scaled_dot_product_attention')
if not self.flash:
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
if self.flash:
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None,
dropout_p=self.attn_dropout.p if self.training else 0.0,
is_causal=True)
else:
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
return self.dropout(self.c_proj(self.gelu(self.c_fc(x))))
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln1 = LayerNorm(config.n_embd, config.bias)
self.attn = CausalSelfAttention(config)
self.ln2 = LayerNorm(config.n_embd, config.bias)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x
from dataclasses import dataclass
@dataclass
class GPTConfig:
block_size: int
vocab_size: int
n_layer: int
n_head: int
n_embd: int
dropout: float = 0.0
bias: bool = True
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
drop=nn.Dropout(config.dropout),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=LayerNorm(config.n_embd, config.bias),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# weight tying
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer))
def _init_weights(self, module):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
B, T = idx.size()
assert T <= self.config.block_size
pos = torch.arange(0, T, dtype=torch.long, device=device)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
if targets is not None:
logits = self.lm_head(x) # (B,T,V)
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)),
targets.view(-1),
ignore_index=-1
)
return logits, loss
else:
logits = self.lm_head(x[:, [-1], :]) # (B,1,V)
return logits, None
"""### 2.4 Define Add SoftPrompt embeddings to input embeddings"""
class GPTWithSoftPrompt(nn.Module):
def __init__(self, base_gpt: GPT, prompt_len=1):
super().__init__()
self.config = base_gpt.config
self.transformer = base_gpt.transformer
self.lm_head = base_gpt.lm_head
C = self.config.n_embd
self.soft_prompt = nn.Parameter(torch.zeros(1, prompt_len, C))
nn.init.normal_(self.soft_prompt, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
device = idx.device
# token + pos
tok_emb = self.transformer.wte(idx) # (B,T,C)
pos = torch.arange(0, T, dtype=torch.long, device=device)
pos_emb = self.transformer.wpe(pos) # (T,C)
x_tokens = tok_emb + pos_emb
# prepend soft prompt
soft = self.soft_prompt.expand(B, -1, -1) # (B,P,C)
x = torch.cat([soft, x_tokens], dim=1) # (B,P+T,C)
x = self.transformer.drop(x)
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x) # (B,P+T,V)
if targets is None:
# return next-token logits at last (standard for generation)
return logits[:, -1, :], None
# ----- FIX: next-token loss with soft-prompt padding -----
P = soft.size(1)
pad_ignore = torch.full((B, P), -1, dtype=targets.dtype, device=device) # ignore for soft prompt
full_targets = torch.cat([pad_ignore, targets], dim=1) # (B,P+T)
# shift for next-token prediction
logits_lm = logits[:, :-1, :].contiguous() # predict next token
targets_lm = full_targets[:, 1:].contiguous()
loss = F.cross_entropy(
logits_lm.view(-1, logits_lm.size(-1)),
targets_lm.view(-1),
ignore_index=-1
)
return logits, loss
"""### 2.5 Instantiate pre-training weights"""
# --- Instantiate & (optionally) load your pretraining weights ---
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use your pretrain block_size (128 in your earlier run). If different, the loader below can resize wpe.
BLOCK_SIZE = 128 # set to 128 if that was your pretrain; otherwise set to your pretrain context length
config = GPTConfig(
vocab_size=len(token2id),
block_size=BLOCK_SIZE,
n_layer=6, n_head=6, n_embd=384,
dropout=0.1, bias=True
)
base_gpt = GPT(config)
def load_with_wpe_resize(model, ckpt_path):
sd = torch.load(ckpt_path, map_location="cpu")
key = "transformer.wpe.weight"
if key in sd:
old = sd[key]
new_len = model.transformer.wpe.weight.shape[0]
if old.shape[0] != new_len:
# copy existing, init the rest
new = model.transformer.wpe.weight.data.clone()
n = min(new_len, old.shape[0])
new[:n] = old[:n]
if new_len > n:
nn.init.normal_(new[n:], mean=0.0, std=0.02)
sd[key] = new
missing, unexpected = model.load_state_dict(sd, strict=False)
print("Loaded state dict with resize. Missing:", missing, "Unexpected:", unexpected)
pt_path = "best_model_params.pt"
if os.path.exists(pt_path):
load_with_wpe_resize(base_gpt, pt_path)
print("Loaded pretraining weights from:", pt_path)
else:
print("No pretrain checkpoint found; training soft prompt from scratch on top of random GPT.")
model = GPTWithSoftPrompt(base_gpt, prompt_len=1).to(device)
"""### 2.6 Build a mask of token IDs that are allowed during generation"""
# --- Constrained token mask (only hallmarks + separators + </s>) ---
def build_allowed_token_mask(vocab_size, device):
allowed = set()
# hallmark token ids
for bpe in bpe_encode_lines(HALLMARKS, desc="BPE hallmarks"):
ids, _ = tokens_to_ids(bpe)
allowed.update(ids)
# separators
for sep in [", ", ",", "; ", ";", "|", " and "]:
bpe = bpe_encode_lines([sep], desc="BPE seps")[0]
ids, _ = tokens_to_ids(bpe)
allowed.update(ids)
allowed.add(eos_id)
mask = torch.full((vocab_size,), float('-inf'), device=device)
mask[list(allowed)] = 0.0
return mask
ALLOWED_MASK = build_allowed_token_mask(len(token2id), device)
"""### 2.7:
- Define a dataset class that encodes abstracts and labels into token IDs (dropping empty-only rows for training if desired)
- Concatenate them into input/target sequences respecting a block size
- Provide a collate function to pad batches for training.
"""
# --- Dataset (drops empty-only rows for TRAIN to avoid collapse) ---
class HoCGenDataset(Dataset):
def __init__(self, df, block_size=256, drop_empty_only=False, name=""):
self.block_size = block_size
self.samples = []
texts = df["text"].astype(str).tolist()
raw_labels = [split_labels(s) for s in df["label"].astype(str).tolist()]
# BPE encode texts with progress
text_bpe = bpe_encode_lines(texts, shard_size=2000, desc=f"BPE {name or 'dataset'}")
# Pre-encode unique label targets
targets = []
for labs in raw_labels:
tgt = labels_to_target_text(labs) # None if empty-only
targets.append(tgt)
uniq_non_null = sorted(set([t for t in targets if t is not None]))
label_cache = {}
if len(uniq_non_null) > 0:
encoded = bpe_encode_lines(uniq_non_null, shard_size=200, desc=f"BPE labels {name or 'dataset'}")
for s, bpe in zip(uniq_non_null, encoded):
ids, _ = tokens_to_ids(bpe)
label_cache[s] = ids
# Pack samples
for bpe, tgt in tqdm(list(zip(text_bpe, targets)), total=len(text_bpe), desc=f"Packing {name or 'dataset'}", leave=False):
if drop_empty_only and tgt is None:
continue
text_ids, _ = tokens_to_ids(bpe)
if tgt is None:
label_ids = []
else:
label_ids = label_cache[tgt]
x_ids = text_ids + [eos_id]
y_ids = (label_ids + [eos_id]) if len(label_ids) > 0 else []
# respect block size
max_text = self.block_size - (2 if len(y_ids) > 0 else 1) - len(y_ids)
if max_text < 1:
x_ids = x_ids[:max(1, self.block_size // 2)]
else:
x_ids = x_ids[:max_text]
input_ids = x_ids + y_ids
targets_arr = ([-1] * len(x_ids)) + (y_ids if len(y_ids) > 0 else [])
self.samples.append((
np.array(input_ids, dtype=np.int64),
np.array(targets_arr, dtype=np.int64)
))
def __len__(self): return len(self.samples)
def __getitem__(self, idx): return self.samples[idx]
def collate(batch):
L = max(len(x[0]) for x in batch)
B = len(batch)
inputs = np.full((B, L), pad_id, dtype=np.int64)
targets = np.full((B, L), -1, dtype=np.int64)
for i, (inp, tgt) in enumerate(batch):
n = len(inp)
inputs[i, :n] = inp
targets[i, :n] = tgt
return torch.from_numpy(inputs), torch.from_numpy(targets)
"""### 2.8 Create dataloaders for the finetuning dataset"""
# --- Datasets/Loaders ---
BATCH_SIZE = 16
# Train: drop empty-only rows (crucial)
train_ds = HoCGenDataset(train_df, block_size=model.config.block_size, drop_empty_only=True, name="train")
# Valid: drop empty-only too (makes val loss meaningful)
valid_ds = HoCGenDataset(valid_df, block_size=model.config.block_size, drop_empty_only=True, name="valid")
# Test: keep all rows; we'll evaluate on the 10 hallmarks only later
test_ds = HoCGenDataset(test_df, block_size=model.config.block_size, drop_empty_only=False, name="test")
cuda_gen = torch.Generator(device='cuda') # or set a manual seed if you want
train_loader = DataLoader(
train_ds, batch_size=BATCH_SIZE, shuffle=True,
collate_fn=collate, drop_last=True,
generator=cuda_gen, # <-- key fix
pin_memory=True, pin_memory_device='cuda'
)
valid_loader = DataLoader(
valid_ds, batch_size=BATCH_SIZE, shuffle=False,
collate_fn=collate,
generator=cuda_gen,
pin_memory=True, pin_memory_device='cuda'
)
test_loader = DataLoader(
test_ds, batch_size=BATCH_SIZE, shuffle=False,
collate_fn=collate,
generator=cuda_gen,
pin_memory=True, pin_memory_device='cuda'
)
print(f"Train samples (non-empty only): {len(train_ds)}")
print(f"Valid samples (non-empty only): {len(valid_ds)}")
print(f"Test samples (incl. empty): {len(test_ds)}")
xb, yb = next(iter(train_loader))
assert (yb != -1).any(), "No supervised label tokens in this batch β are we dropping all rows?"
xb, yb = xb.to(device), yb.to(device)
with torch.no_grad():
_, loss = model(xb, yb)
print("Initial loss:", float(loss))
"""### 2.9
- Feeds the current context into the model (self(ctx)).
- Adds the allowed_mask to the logits so that only permitted token IDs (Hallmarks, separators, </s>) can be chosen; all others get -inf and are impossible to sample.
- Picks the next token greedily (argmax) unless a temperature is set, in which case it samples.
- Forces already finished sequences to emit </s> and stops early when all sequences are finished.
"""
# --- Constrained, batched decoding method for GPTWithSoftPrompt ---
def constrained_generate_labels(self, idx, allowed_mask, max_new_tokens=24, temperature=0.0):
"""
Batched decode. At each step, mask logits to the allowed set.
Returns only generated tail (B, Tgen).
"""
self.eval()
B = idx.size(0)
out = idx.clone()
finished = torch.zeros(B, dtype=torch.bool, device=idx.device)
for _ in range(max_new_tokens):
ctx = out[:, -self.config.block_size:]
logits, _ = self(ctx) # (B,V)
# apply constraint
logits = logits + allowed_mask
if temperature <= 0:
next_id = torch.argmax(logits, dim=-1) # (B,)
else:
probs = F.softmax(logits / temperature, dim=-1)
next_id = torch.multinomial(probs, num_samples=1).squeeze(1)
next_id = next_id.masked_fill(finished, eos_id)
out = torch.cat([out, next_id.unsqueeze(1)], dim=1)
finished |= (next_id == eos_id)
if bool(finished.all()):
break
return out[:, idx.size(1):]
# attach to instance/class
GPTWithSoftPrompt.generate_labels = constrained_generate_labels
"""### 2.10 Run the finetuning loop"""
# --- Optimizer & schedulers (paper: 20k steps, warmup 1k, peak LR 1e-5) ---
max_steps = 20_000
warmup = 1_000
peak_lr = 1e-5
eta_min = 1e-6
optimizer = torch.optim.AdamW(model.parameters(), lr=peak_lr, betas=(0.9, 0.95), weight_decay=0.01, eps=1e-9)
sched_warm = LinearLR(optimizer, total_iters=warmup)
sched_decay = CosineAnnealingLR(optimizer, T_max=max_steps - warmup, eta_min=eta_min)
scheduler = SequentialLR(optimizer, [sched_warm, sched_decay], milestones=[warmup])
# AMP dtype: bf16 if supported, else fp16; enable GradScaler only if fp16
amp_dtype = torch.bfloat16 if (torch.cuda.is_available() and torch.cuda.is_bf16_supported()) else torch.float16
scaler = torch.cuda.amp.GradScaler(enabled=(amp_dtype == torch.float16))
def run_eval(loader):
model.eval()
losses = []
with torch.no_grad():
for xb, yb in tqdm(loader, desc="Valid", leave=False):
xb, yb = xb.to(device), yb.to(device)
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=torch.cuda.is_available()):
_, loss = model(xb, yb)
losses.append(loss.item())
model.train()
return float(np.mean(losses)) if losses else 0.0
# --- Training loop ---
EVAL_EVERY = 500
BEST_PATH = "hoc_best.pt"
best_val = float('inf')
global_step = 0
ema_loss = None
pbar = tqdm(total=max_steps, desc="Finetuning (HoC)", leave=True)
model.train()
while global_step < max_steps:
for xb, yb in train_loader:
xb, yb = xb.to(device), yb.to(device)
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=torch.cuda.is_available()):
_, loss = model(xb, yb)
scaler.scale(loss).backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
scheduler.step()
global_step += 1
pbar.update(1)
cur = loss.item()
ema_loss = cur if ema_loss is None else (0.95 * ema_loss + 0.05 * cur)
pbar.set_postfix({
"train_loss": f"{cur:.3f}",
"ema": f"{ema_loss:.3f}",
"best_val": f"{best_val:.3f}" if best_val < float('inf') else "β",
"lr": f"{optimizer.param_groups[0]['lr']:.2e}",
})
if global_step % EVAL_EVERY == 0:
val_loss = run_eval(valid_loader)
if val_loss < best_val:
best_val = val_loss
torch.save(model.state_dict(), BEST_PATH)
pbar.set_postfix({
"train_loss": f"{cur:.3f}",
"ema": f"{ema_loss:.3f}",
"best_val": f"{best_val:.3f}",
"lr": f"{optimizer.param_groups[0]['lr']:.2e}",
})
if global_step >= max_steps:
break
pbar.close()
# reload best
if os.path.exists(BEST_PATH):
model.load_state_dict(torch.load(BEST_PATH, map_location=device))
print("Loaded best checkpoint:", BEST_PATH, " (val_loss:", f"{best_val:.4f}", ")")
"""### 2.11 Classification evaluation"""
# --- Build context-only inputs (text </s>) directly from raw test_df ---
def make_context_only(df):
texts = df["text"].astype(str).tolist()
bpes = bpe_encode_lines(texts, desc="BPE test ctx")
ctx = []
for bpe in bpes:
ids, _ = tokens_to_ids(bpe)
ctx.append(np.array(ids + [eos_id], dtype=np.int64))
return ctx
def pad_batch(seqs):
L = max(len(s) for s in seqs)
out = np.full((len(seqs), L), pad_id, dtype=np.int64)
for i, s in enumerate(seqs):
out[i, :len(s)] = s
return torch.from_numpy(out)
def ids_to_tokens(ids):
return [id2token.get(int(i), "<unk>") for i in ids]
def to_canonical(pred_chunk: str):
s = (pred_chunk or "").strip().lower()
low = [L.lower() for L in HALLMARKS]
if s in low:
return HALLMARKS[low.index(s)]
best = difflib.get_close_matches(s, low, n=1, cutoff=0.7)
return HALLMARKS[low.index(best[0])] if best else None
def predict_labels_for_batch(xb):
"""xb: (B, T) context-only input ids (text </s>)."""
with torch.no_grad():
gens = model.generate_labels(xb, allowed_mask=ALLOWED_MASK, max_new_tokens=24, temperature=0.0)
preds = []
for g in gens:
toks = ids_to_tokens(g.detach().cpu().numpy())
# cut at EOS
toks = toks[: toks.index("</s>")] if "</s>" in toks else toks
label_str = bpe_decode_tokens(toks).strip().lower()
# split multi-label guesses
parts = []
for sep in [",", ";", "|"]:
if sep in label_str:
parts = [p.strip() for p in label_str.split(sep) if p.strip()]
break
if not parts:
parts = [label_str] if label_str else []
# map to canonical hallmarks (no default to 'empty')
mapped = []
for p in parts:
can = to_canonical(p)
if can and can not in mapped:
mapped.append(can)
preds.append(mapped) # may be []
return preds
# --- Run decoding on TEST ---
model.eval()
ctx_test = make_context_only(test_df)
B = 32
preds_all = []
for i in tqdm(range(0, len(ctx_test), B), desc="Decoding (test)"):
batch_ctx = pad_batch(ctx_test[i:i+B]).to(device)
preds_all.extend(predict_labels_for_batch(batch_ctx))
# --- Build ground truth (hallmarks only) ---
y_true = [ normalize_labels(split_labels(s)) for s in test_df["label"].astype(str).tolist() ]
# --- Binarize and score (10 hallmarks only) ---
from sklearn.metrics import precision_recall_fscore_support
LABELS = HALLMARKS
LIDX = {l:i for i,l in enumerate(LABELS)}
def binarize(labs):
v = [0]*len(LABELS)
for l in labs:
if l in LIDX:
v[LIDX[l]] = 1
return v
Y_true = np.array([binarize(labs) for labs in y_true], dtype=np.int64)
Y_pred = np.array([binarize(labs) for labs in preds_all], dtype=np.int64)
micro_p, micro_r, micro_f1, _ = precision_recall_fscore_support(Y_true, Y_pred, average='micro', zero_division=0)
macro_p, macro_r, macro_f1, _ = precision_recall_fscore_support(Y_true, Y_pred, average='macro', zero_division=0)
print(f"\nHALLMARKS-ONLY Micro P/R/F1: {micro_p:.4f} / {micro_r:.4f} / {micro_f1:.4f}")
print( f"HALLMARKS-ONLY Macro P/R/F1: {macro_p:.4f} / {macro_r:.4f} / {macro_f1:.4f}")
perclass = precision_recall_fscore_support(Y_true, Y_pred, average=None, zero_division=0)
per_df = pd.DataFrame({
"label": LABELS,
"precision": perclass[0],
"recall": perclass[1],
"f1": perclass[2],
"support": perclass[3],
}).sort_values("label")
print("\nPer-class results (10 hallmarks):")
print(per_df.to_string(index=False))
per_df.to_csv("hoc_test_results_per_class.csv", index=False)
print("Saved: hoc_test_results_per_class.csv") |