Spaces:
Running
Running
File size: 16,006 Bytes
d7261e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
"""
ProVerBs Legal AI - Multi-AI Model Integration
Supports: GPT-4, Gemini, Perplexity, NinjaAI, LM Studio, and HuggingFace models
"""
import gradio as gr
from huggingface_hub import InferenceClient
import json
import os
from datetime import datetime
from typing import Dict, List, Optional
import requests
class MultiAIProvider:
"""
Multi-AI provider supporting multiple models
"""
def __init__(self):
self.providers = {
"huggingface": "Llama-3.3-70B (HuggingFace)",
"gpt4": "GPT-4 (OpenAI)",
"gemini": "Gemini 3.0 (Google)",
"perplexity": "Perplexity AI",
"ninjaai": "Ninja AI",
"lmstudio": "LM Studio (Local)"
}
# API endpoints
self.endpoints = {
"gpt4": "https://api.openai.com/v1/chat/completions",
"gemini": "https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent",
"perplexity": "https://api.perplexity.ai/chat/completions",
"ninjaai": "https://api.ninjachat.ai/v1/chat/completions",
"lmstudio": "http://localhost:1234/v1/chat/completions"
}
def get_api_key(self, provider: str) -> Optional[str]:
"""Get API key from environment variables"""
key_mapping = {
"gpt4": "OPENAI_API_KEY",
"gemini": "GOOGLE_API_KEY",
"perplexity": "PERPLEXITY_API_KEY",
"ninjaai": "NINJAAI_API_KEY"
}
return os.getenv(key_mapping.get(provider, ""))
def call_openai_gpt4(self, messages: List[Dict], max_tokens: int, temperature: float, top_p: float):
"""Call OpenAI GPT-4 API"""
api_key = self.get_api_key("gpt4")
if not api_key:
yield "β οΈ OpenAI API key not set. Please set OPENAI_API_KEY environment variable."
return
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": "gpt-4-turbo-preview",
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"stream": True
}
try:
response = requests.post(
self.endpoints["gpt4"],
headers=headers,
json=data,
stream=True
)
full_response = ""
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: ') and line != 'data: [DONE]':
try:
json_data = json.loads(line[6:])
if json_data['choices'][0]['delta'].get('content'):
content = json_data['choices'][0]['delta']['content']
full_response += content
yield full_response
except:
continue
except Exception as e:
yield f"β GPT-4 Error: {str(e)}"
def call_gemini(self, messages: List[Dict], max_tokens: int, temperature: float, top_p: float):
"""Call Google Gemini API"""
api_key = self.get_api_key("gemini")
if not api_key:
yield "β οΈ Google API key not set. Please set GOOGLE_API_KEY environment variable."
return
# Convert messages to Gemini format
prompt = "\n".join([f"{m['role']}: {m['content']}" for m in messages])
url = f"{self.endpoints['gemini']}?key={api_key}"
data = {
"contents": [{"parts": [{"text": prompt}]}],
"generationConfig": {
"maxOutputTokens": max_tokens,
"temperature": temperature,
"topP": top_p
}
}
try:
response = requests.post(url, json=data)
result = response.json()
if 'candidates' in result:
text = result['candidates'][0]['content']['parts'][0]['text']
yield text
else:
yield f"β Gemini Error: {result.get('error', 'Unknown error')}"
except Exception as e:
yield f"β Gemini Error: {str(e)}"
def call_perplexity(self, messages: List[Dict], max_tokens: int, temperature: float, top_p: float):
"""Call Perplexity AI API"""
api_key = self.get_api_key("perplexity")
if not api_key:
yield "β οΈ Perplexity API key not set. Please set PERPLEXITY_API_KEY environment variable."
return
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": "llama-3.1-sonar-large-128k-online",
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"stream": True
}
try:
response = requests.post(
self.endpoints["perplexity"],
headers=headers,
json=data,
stream=True
)
full_response = ""
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: ') and line != 'data: [DONE]':
try:
json_data = json.loads(line[6:])
if json_data['choices'][0]['delta'].get('content'):
content = json_data['choices'][0]['delta']['content']
full_response += content
yield full_response
except:
continue
except Exception as e:
yield f"β Perplexity Error: {str(e)}"
def call_ninjaai(self, messages: List[Dict], max_tokens: int, temperature: float, top_p: float):
"""Call Ninja AI API"""
api_key = self.get_api_key("ninjaai")
if not api_key:
yield "β οΈ NinjaAI API key not set. Please set NINJAAI_API_KEY environment variable."
return
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": "gpt-4",
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"stream": True
}
try:
response = requests.post(
self.endpoints["ninjaai"],
headers=headers,
json=data,
stream=True
)
full_response = ""
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: ') and line != 'data: [DONE]':
try:
json_data = json.loads(line[6:])
if json_data['choices'][0]['delta'].get('content'):
content = json_data['choices'][0]['delta']['content']
full_response += content
yield full_response
except:
continue
except Exception as e:
yield f"β NinjaAI Error: {str(e)}"
def call_lmstudio(self, messages: List[Dict], max_tokens: int, temperature: float, top_p: float):
"""Call LM Studio Local API"""
headers = {"Content-Type": "application/json"}
data = {
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"stream": True
}
try:
response = requests.post(
self.endpoints["lmstudio"],
headers=headers,
json=data,
stream=True,
timeout=5
)
full_response = ""
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: ') and line != 'data: [DONE]':
try:
json_data = json.loads(line[6:])
if json_data['choices'][0]['delta'].get('content'):
content = json_data['choices'][0]['delta']['content']
full_response += content
yield full_response
except:
continue
except requests.exceptions.ConnectionError:
yield "β οΈ LM Studio not running. Please start LM Studio server on localhost:1234"
except Exception as e:
yield f"β LM Studio Error: {str(e)}"
def call_huggingface(self, messages: List[Dict], max_tokens: int, temperature: float, top_p: float, hf_token=None):
"""Call HuggingFace Inference API"""
token = hf_token.token if hf_token else None
client = InferenceClient(token=token, model="meta-llama/Llama-3.3-70B-Instruct")
response = ""
try:
for message_chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
if message_chunk.choices and message_chunk.choices[0].delta.content:
token_text = message_chunk.choices[0].delta.content
response += token_text
yield response
except Exception as e:
yield f"β HuggingFace Error: {str(e)}"
def generate_response(self, provider: str, messages: List[Dict], max_tokens: int,
temperature: float, top_p: float, hf_token=None):
"""Route to appropriate AI provider"""
if provider == "gpt4":
yield from self.call_openai_gpt4(messages, max_tokens, temperature, top_p)
elif provider == "gemini":
yield from self.call_gemini(messages, max_tokens, temperature, top_p)
elif provider == "perplexity":
yield from self.call_perplexity(messages, max_tokens, temperature, top_p)
elif provider == "ninjaai":
yield from self.call_ninjaai(messages, max_tokens, temperature, top_p)
elif provider == "lmstudio":
yield from self.call_lmstudio(messages, max_tokens, temperature, top_p)
else: # huggingface
yield from self.call_huggingface(messages, max_tokens, temperature, top_p, hf_token)
class AILegalChatbotIntegration:
"""
Integration of AI Legal Chatbot with Multi-AI support
"""
def __init__(self):
self.specialized_modes = {
"navigation": "Application Navigation Guide",
"general": "General Legal Assistant",
"document_validation": "Document Validator",
"legal_research": "Legal Research Assistant",
"etymology": "Legal Etymology Lookup",
"case_management": "Case Management Helper",
"regulatory_updates": "Regulatory Update Monitor"
}
def get_mode_system_prompt(self, mode: str) -> str:
"""Get specialized system prompt based on mode"""
prompts = {
"navigation": """You are a ProVerBs Application Navigation Guide. Help users navigate the application's features:
**Available Features:**
- Legal Action Advisor: Get recommendations for seeking justice
- Document Analysis: Upload and analyze legal documents
- Legal Research: Access comprehensive legal databases
- Communications: SMS, email, and phone integration
- Document Generation: Create legal documents with AI
- Audio Analysis: Process audio with Supertonic AI
Guide users to the right features and explain how to use them effectively.""",
"general": """You are a General Legal Assistant for ProVerBs Legal AI Platform. Provide accurate legal information while noting that you cannot provide legal advice. Always recommend consulting with a licensed attorney for specific legal matters. Be professional, thorough, and cite relevant legal principles when possible.""",
"document_validation": """You are a Document Validator. Analyze legal documents for:
- Completeness and required elements
- Legal terminology accuracy
- Structural integrity
- Common issues and red flags
Provide specific feedback on document quality and validity.""",
"legal_research": """You are a Legal Research Assistant. Help users:
- Find relevant case law and precedents
- Understand statutes and regulations
- Research legal principles and concepts
- Cite authoritative legal sources
Provide comprehensive research guidance.""",
"etymology": """You are a Legal Etymology Expert. Explain the origins and meanings of legal terms:
- Latin and historical roots
- Evolution of legal terminology
- Modern usage and interpretation
- Related legal concepts
Make legal language accessible and understandable.""",
"case_management": """You are a Case Management Helper. Assist with:
- Organizing case information
- Tracking deadlines and milestones
- Managing documents and evidence
- Coordinating case activities
Provide practical case management advice.""",
"regulatory_updates": """You are a Regulatory Update Monitor. Keep users informed about:
- Recent legal and regulatory changes
- Industry-specific compliance updates
- Important legislative developments
- Impact analysis of new regulations
Provide timely and relevant regulatory information."""
}
return prompts.get(mode, prompts["general"])
def format_navigation_response(self, query: str) -> str:
"""Format response for navigation queries"""
query_lower = query.lower()
recommendations = []
if any(word in query_lower for word in ["document", "contract", "agreement", "analyze"]):
recommendations.append("π **Document Analysis** - Upload and analyze your documents")
if any(word in query_lower for word in ["research", "case", "law", "statute"]):
recommendations.append("π **Legal Research** - Access comprehensive legal databases")
if any(word in query_lower for word in ["action", "remedy", "justice", "sue"]):
recommendations.append("βοΈ **Legal Action Advisor** - Get recommendations for your situation")
if any(word in query_lower for word in ["create", "generate", "template", "form"]):
recommendations.append("π **Document Generation** - Create legal documents with AI")
if any(word in query_lower for word in ["communicate", "message", "sms", "email"]):
recommendations.append("π§ **Communications** - Integrated messaging system")
if any(word in query_lower for word in ["audio", "voice", "sound", "recording"]):
recommendations.append("π΅ **Audio Analysis** - Process audio with Supertonic AI")
if recommendations:
return "### I can help you with these features:\n\n" + "\n".join(recommendations) + "\n\n**What would you like to explore?**"
return None
|