Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline | |
| import torch | |
| # Load the Whisper model | |
| model_id = "openai/whisper-tiny.en" | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = pipeline("automatic-speech-recognition", model=model_id, device=device) | |
| def transcribe_audio(audio_file): | |
| # Read audio file | |
| audio_bytes = audio_file.read() | |
| # Get transcription results | |
| results = pipe(audio_bytes) | |
| # Return the transcription | |
| return results | |
| # Streamlit interface | |
| st.title("Speech to Text with Whisper") | |
| audio_file = st.file_uploader("Upload an audio file", type=['wav', 'mp3', 'ogg']) | |
| if audio_file is not None: | |
| # Display a button to transcribe the audio | |
| if st.button('Transcribe'): | |
| with st.spinner(f'Transcribing audio...'): | |
| transcription = transcribe_audio(audio_file) | |
| st.text_area("Transcription", transcription['text'], height=150) |