Spaces:
Paused
Paused
Create vectorstore.py
Browse files- vectorstore.py +94 -0
vectorstore.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import fitz
|
| 2 |
+
import re
|
| 3 |
+
import chromadb
|
| 4 |
+
from chromadb.utils import embedding_functions
|
| 5 |
+
import uuid
|
| 6 |
+
import torch
|
| 7 |
+
from langchain.text_splitter import SentenceTransformersTokenTextSplitter
|
| 8 |
+
from sentence_transformers import CrossEncoder
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
emb_model_name = "sentence-transformers/all-mpnet-base-v2"
|
| 12 |
+
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-mpnet-base-v2")
|
| 13 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
| 14 |
+
|
| 15 |
+
client = chromadb.PersistentClient(path='.vectorstore')
|
| 16 |
+
|
| 17 |
+
collection = client.get_or_create_collection(name='huerto',embedding_function=sentence_transformer_ef,metadata={"hnsw:space": "cosine"})
|
| 18 |
+
|
| 19 |
+
def parse_pdf(file) :
|
| 20 |
+
'''transforma un pdf en una lista'''
|
| 21 |
+
pdf = fitz.open(file)
|
| 22 |
+
output = []
|
| 23 |
+
for page_num in range(pdf.page_count):
|
| 24 |
+
page = pdf[page_num]
|
| 25 |
+
text = page.get_text()
|
| 26 |
+
# Merge hyphenated words
|
| 27 |
+
text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text)
|
| 28 |
+
# Fix newlines in the middle of sentences
|
| 29 |
+
text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip())
|
| 30 |
+
# Remove multiple newlines
|
| 31 |
+
text = re.sub(r"\n\s*\n", "\n\n", text)
|
| 32 |
+
output.append(text)
|
| 33 |
+
return output
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def file_to_splits(file,tokens_per_chunk,chunk_overlap ):
|
| 37 |
+
'''Transforma un txt o pdf en una en una lista que contiene piezas con metadata'''
|
| 38 |
+
text_splitter = SentenceTransformersTokenTextSplitter(
|
| 39 |
+
model_name=emb_model_name,
|
| 40 |
+
tokens_per_chunk=tokens_per_chunk,
|
| 41 |
+
chunk_overlap=chunk_overlap,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
text = parse_pdf(file)
|
| 46 |
+
|
| 47 |
+
doc_chunks = []
|
| 48 |
+
for i in range(len(text)):
|
| 49 |
+
chunks = text_splitter.split_text(text[i])
|
| 50 |
+
for j in range(len(chunks)):
|
| 51 |
+
doc = [chunks[j], {"source": file.split('/')[-1] ,"page": i+1, "chunk": j+1}, str(uuid.uuid4())]
|
| 52 |
+
doc_chunks.append(doc)
|
| 53 |
+
return doc_chunks
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def file_to_vs(file,tokens_per_chunk, chunk_overlap):
|
| 57 |
+
try:
|
| 58 |
+
|
| 59 |
+
splits=[]
|
| 60 |
+
|
| 61 |
+
splits.extend(file_to_splits(file,
|
| 62 |
+
tokens_per_chunk,
|
| 63 |
+
chunk_overlap))
|
| 64 |
+
splits = list(zip(*splits))
|
| 65 |
+
|
| 66 |
+
collection.add(documents=list(splits[0]), metadatas=list(splits[1]), ids= list(splits[2]))
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
return 'Files uploaded successfully'
|
| 73 |
+
except Exception as e:
|
| 74 |
+
|
| 75 |
+
return str(e)
|
| 76 |
+
|
| 77 |
+
def similarity_search(query,k):
|
| 78 |
+
sources = {}
|
| 79 |
+
ss_out= collection.query(query_texts=[query],n_results=20)
|
| 80 |
+
for _ in range(len(ss_out['ids'][0])):
|
| 81 |
+
score = float(cross_encoder.predict([query,ss_out['documents'][0][_]],activation_fct=torch.nn.Sigmoid()))
|
| 82 |
+
sources[str(_)]={"page_content":ss_out['documents'][0][_],"metadata":ss_out['metadatas'][0][_],"similarity":round(score*100,2)}
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
sorted_sources = sorted(sources.items(), key=lambda x: x[1]['similarity'], reverse=True)
|
| 86 |
+
|
| 87 |
+
sources = {}
|
| 88 |
+
for _ in range(k):
|
| 89 |
+
sources[str(_)] = sorted_sources[_][1]
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
return sources
|
| 93 |
+
|
| 94 |
+
|