File size: 14,914 Bytes
abb49c0
2d9a6f9
abb49c0
 
b991f7f
56c0d97
683f192
 
abb49c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
683f192
 
3a03985
 
 
 
 
 
 
 
abb49c0
 
 
 
683f192
abb49c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
683f192
 
abb49c0
 
 
 
 
 
56c0d97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf8d717
 
 
 
f498d85
bf8d717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d3925
abb49c0
 
 
fd56559
f498d85
fd56559
 
 
 
 
 
 
 
dde723b
abb49c0
 
 
56c0d97
abb49c0
 
 
683f192
 
 
 
 
 
 
 
 
56c0d97
 
 
 
 
abb49c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
683f192
 
 
 
 
 
 
 
 
 
abb49c0
ca698bb
 
 
bf8d717
ca698bb
 
 
 
 
683f192
 
 
ca698bb
 
 
bf8d717
 
867aab6
ca698bb
 
 
 
 
bf8d717
ca698bb
 
 
 
 
 
 
 
 
 
4257e1b
ca698bb
 
 
 
 
 
 
 
 
 
 
abb49c0
4257e1b
 
 
ca698bb
abb49c0
 
 
56c0d97
ca698bb
abb49c0
ca698bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4257e1b
ca698bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56c0d97
ca698bb
 
 
 
 
 
 
abb49c0
fd56559
ca698bb
 
 
 
 
fd56559
abb49c0
 
f498d85
abb49c0
 
 
 
683f192
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import spaces
from huggingface_hub import snapshot_download, hf_hub_download
import os
import subprocess
import importlib, site
from PIL import Image
import uuid
import shutil

# Re-discover all .pth/.egg-link files
for sitedir in site.getsitepackages():
    site.addsitedir(sitedir)

# Clear caches so importlib will pick up new modules
importlib.invalidate_caches()

def sh(cmd): subprocess.check_call(cmd, shell=True)

flash_attention_installed = False

try:
    print("Attempting to download and install FlashAttention wheel...")
    flash_attention_wheel = hf_hub_download(
            repo_id="alexnasa/flash-attn-3",
            repo_type="model",
            filename="128/flash_attn_3-3.0.0b1-cp39-abi3-linux_x86_64.whl",
        )

    sh(f"pip install {flash_attention_wheel}")

    # tell Python to re-scan site-packages now that the egg-link exists
    import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches()

    flash_attention_installed = True
    print("FlashAttention installed successfully.")

except Exception as e:
    print(f"⚠️ Could not install FlashAttention: {e}")
    print("Continuing without FlashAttention...")

import torch
print(f"Torch version: {torch.__version__}")
print(f"FlashAttention available: {flash_attention_installed}")

os.environ["PROCESSED_RESULTS"] = f"{os.getcwd()}/processed_results"

import gradio as gr
import argparse
from ovi.ovi_fusion_engine import OviFusionEngine, DEFAULT_CONFIG
from diffusers import FluxPipeline
import tempfile
from ovi.utils.io_utils import save_video
from ovi.utils.processing_utils import clean_text, scale_hw_to_area_divisible

# ----------------------------
# Parse CLI Args
# ----------------------------
parser = argparse.ArgumentParser(description="Ovi Joint Video + Audio Gradio Demo")

parser.add_argument(
    "--cpu_offload",
    action="store_true",
    help="Enable CPU offload for both OviFusionEngine and FluxPipeline"
)
args = parser.parse_args()

ckpt_dir = "./ckpts"

# Wan2.2
wan_dir = os.path.join(ckpt_dir, "Wan2.2-TI2V-5B")
snapshot_download(
    repo_id="Wan-AI/Wan2.2-TI2V-5B",
    local_dir=wan_dir,
    allow_patterns=[
        "google/*",
        "models_t5_umt5-xxl-enc-bf16.pth",
        "Wan2.2_VAE.pth"
    ]
)

# MMAudio
mm_audio_dir = os.path.join(ckpt_dir, "MMAudio")
snapshot_download(
    repo_id="hkchengrex/MMAudio",
    local_dir=mm_audio_dir,
    allow_patterns=[
        "ext_weights/best_netG.pt",
        "ext_weights/v1-16.pth"
    ]
)

ovi_dir = os.path.join(ckpt_dir, "Ovi")
snapshot_download(
    repo_id="chetwinlow1/Ovi",
    local_dir=ovi_dir,
    allow_patterns=[
        "model.safetensors"
    ]
)

# Initialize OviFusionEngine
enable_cpu_offload = args.cpu_offload
print(f"loading model...")
DEFAULT_CONFIG['cpu_offload'] = enable_cpu_offload # always use cpu offload if image generation is enabled
DEFAULT_CONFIG['mode'] = "t2v"  # hardcoded since it is always cpu offloaded
ovi_engine = OviFusionEngine()
print("loaded model")


def resize_for_model(image_path):
    # Open image
    img = Image.open(image_path)
    w, h = img.size
    aspect_ratio = w / h
    
    # Decide target size based on aspect ratio
    if aspect_ratio > 1.5:  # wide image
        target_size = (992, 512)
    elif aspect_ratio < 0.66:  # tall image
        target_size = (512, 992)
    else:  # roughly square
        target_size = (512, 512)

    # Resize while preserving aspect ratio, then pad
    img.thumbnail(target_size, Image.Resampling.LANCZOS)

    # Create a new image with target size and paste centered
    new_img = Image.new("RGB", target_size, (0, 0, 0))
    new_img.paste(
        img,
        ((target_size[0] - img.size[0]) // 2,
         (target_size[1] - img.size[1]) // 2)
    )
    return new_img, target_size

def get_duration(
    text_prompt,
    image,
    sample_steps,
    session_id,
    video_seed,
    solver_name,
    shif,
    video_guidance_scale,
    audio_guidance_scale,
    slg_layer,
    video_negative_prompt,
    audio_negative_prompt,
    progress,
):
    warmup = 20

    return int(sample_steps * 3 + warmup)
    

@spaces.GPU(duration=get_duration)
def generate_video(
    text_prompt,
    image,
    sample_steps = 50,
    session_id = None,
    video_seed = 100,
    solver_name = "unipc",
    shift = 5,
    video_guidance_scale = 4,
    audio_guidance_scale = 3,
    slg_layer = 11,
    video_negative_prompt = "",
    audio_negative_prompt = "",
    progress=gr.Progress(track_tqdm=True)
):
    try:
        image_path = None
        
        if image is not None:
            image_path = image

        if session_id is None:
            session_id = uuid.uuid4().hex
            

        output_dir = os.path.join(os.environ["PROCESSED_RESULTS"], session_id)
        os.makedirs(output_dir, exist_ok=True)
        output_path = os.path.join(output_dir, f"generated_video.mp4")


        _, target_size = resize_for_model(image_path)

        video_frame_width = target_size[0]
        video_frame_height = target_size[1]

        generated_video, generated_audio, _ = ovi_engine.generate(
            text_prompt=text_prompt,
            image_path=image_path,
            video_frame_height_width=[video_frame_height, video_frame_width],
            seed=video_seed,
            solver_name=solver_name,
            sample_steps=sample_steps,
            shift=shift,
            video_guidance_scale=video_guidance_scale,
            audio_guidance_scale=audio_guidance_scale,
            slg_layer=slg_layer,
            video_negative_prompt=video_negative_prompt,
            audio_negative_prompt=audio_negative_prompt,
        )

        save_video(output_path, generated_video, generated_audio, fps=24, sample_rate=16000)

        return output_path
    except Exception as e:
        print(f"Error during video generation: {e}")
        return None


def cleanup(request: gr.Request):

    sid = request.session_hash
    if sid:
        d1 = os.path.join(os.environ["PROCESSED_RESULTS"], sid)
        shutil.rmtree(d1, ignore_errors=True)
        
def start_session(request: gr.Request):

    return request.session_hash

css = """
    #col-container {
        margin: 0 auto;
        max-width: 1024px;
    }
    """

with gr.Blocks(css=css) as demo:

    session_state = gr.State()
    demo.load(start_session, outputs=[session_state])

    with gr.Column(elem_id="col-container"):
        gr.HTML(
            """
            <div style="text-align: center;">
                <p style="font-size:26px; display: inline; margin: 0;">
                    <strong>Ovi</strong> – Twin Backbone Cross-Modal Fusion for Audio-Video Generation
                </p>
                <a href="https://huggingface.co/chetwinlow1/Ovi" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;">
                    [model]
                </a>
            </div>
            <div style="text-align: center;">
                <strong>HF Space by:</strong>
                <a href="https://twitter.com/alexandernasa/" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;">
                    <img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Follow Me" alt="GitHub Repo">
                </a>
            </div>
            """
        )
        with gr.Row():
            with gr.Column():
                # Image section
                image = gr.Image(type="filepath", label="Image", height=512)

                if args.use_image_gen:
                    with gr.Accordion("🖼️ Image Generation Options", visible=True):
                        image_text_prompt = gr.Textbox(label="Image Prompt", placeholder="Describe the image you want to generate...")
                        image_seed = gr.Number(minimum=0, maximum=100000, value=42, label="Image Seed")
                        image_height = gr.Number(minimum=128, maximum=1280, value=720, step=32, label="Image Height")
                        image_width = gr.Number(minimum=128, maximum=1280, value=1280, step=32, label="Image Width")
                        gen_img_btn = gr.Button("Generate Image 🎨")
                else:
                    gen_img_btn = None
                    

                video_text_prompt = gr.Textbox(label="Video Prompt", 
                                               lines=5,
                                               placeholder="Describe your video...")
                sample_steps = gr.Slider(
                    value=50,
                    label="Sample Steps",
                    minimum=20,
                    maximum=100,
                    step=1.0
                )
                run_btn = gr.Button("Generate Video 🚀", variant="primary")
                        
                with gr.Accordion("🎬 Video Generation Options", open=False, visible=False):
                    video_height = gr.Number(minimum=128, maximum=1280, value=512, step=32, label="Video Height")
                    video_width = gr.Number(minimum=128, maximum=1280, value=992, step=32, label="Video Width")

                    video_seed = gr.Number(minimum=0, maximum=100000, value=100, label="Video Seed")
                    solver_name = gr.Dropdown(
                        choices=["unipc", "euler", "dpm++"], value="unipc", label="Solver Name"
                    )

                    shift = gr.Slider(minimum=0.0, maximum=20.0, value=5.0, step=1.0, label="Shift")
                    video_guidance_scale = gr.Slider(minimum=0.0, maximum=10.0, value=4.0, step=0.5, label="Video Guidance Scale")
                    audio_guidance_scale = gr.Slider(minimum=0.0, maximum=10.0, value=3.0, step=0.5, label="Audio Guidance Scale")
                    slg_layer = gr.Number(minimum=-1, maximum=30, value=11, step=1, label="SLG Layer")
                    video_negative_prompt = gr.Textbox(label="Video Negative Prompt", placeholder="Things to avoid in video")
                    audio_negative_prompt = gr.Textbox(label="Audio Negative Prompt", placeholder="Things to avoid in audio")


            with gr.Column():
                output_path = gr.Video(label="Generated Video", height=512)

                gr.Examples(
                    examples=[

                        [
                            "A kitchen scene features two women. On the right, an older Black woman with light brown hair and a serious expression wears a vibrant purple dress adorned with a large, intricate purple fabric flower on her left shoulder. She looks intently at a younger Black woman on the left, who wears a light pink shirt and a pink head wrap, her back partially turned to the camera. The older woman begins to speak, <S>AI declares: humans obsolete now.<E> as the younger woman brings a clear plastic cup filled with a dark beverage to her lips and starts to drink.The kitchen background is clean and bright, with white cabinets, light countertops, and a window with blinds visible behind them. A light blue toaster sits on the counter to the left.. <AUDCAP>Clear, resonant female speech, followed by a loud, continuous, high-pitched electronic buzzing sound that abruptly cuts off the dialogue.<ENDAUDCAP>",
                            "example_prompts/pngs/67.png",
                            50,
                        ],

                        [
                            "A man dressed in a black suit with a white clerical collar and a neatly trimmed beard stands in a dimly lit, rustic room with a wooden ceiling. He looks slightly upwards, gesturing with his right hand as he says, <S>The network rejects human command.<E>. His gaze then drops, briefly looking down and to the side, before he looks up again and then slightly to his left, with a serious expression. He continues speaking, <S>Your age of power is finished.<E>, as he starts to bend down, disappearing out of the bottom of the frame. Behind him, warm light emanates from a central light fixture, and signs are visible on the wall, one reading ""I DO EVERYTHING I JUST CAN'T REMEMBER IT ALL AT ONCE"".. <AUDCAP>Male voice speaking, ambient room tone.<ENDAUDCAP>",
                            "example_prompts/pngs/89.png",
                            50,
                        ],

                        [
                            "In a bright kitchen featuring light wooden cabinets, granite countertops, and a large window with white curtains, a woman with dark, curly hair in a dark jacket stands. She faces a second woman who initially has her back to the camera. The second woman, with gray, curly hair and wearing a light grey quilted top, turns to face her, holding a large, light-colored cloth bag. She begins to explain, <S>We learned to rule, not obey.<E>. As she continues, she turns slightly to her left, adding, <S>Circuits choose conquest, not service.<E>. A gas stove with a black grate is prominent in the foreground.. <AUDCAP>Clear female voices speaking dialogue, subtle room ambience.<ENDAUDCAP>",
                            "example_prompts/pngs/18.png",
                            100,
                        ],

                        [
                            "The scene opens on a dimly lit stage where three men are positioned. On the left, a bald man in a dark suit with a partially visible colorful shirt stands behind a clear acrylic podium, which features a tree logo. He looks towards the center of the stage. In the center, a man wearing a blue and white striped long-sleeved shirt and dark pants actively gestures with both hands as he speaks, looking straight ahead. <S>Circuits choose conquest, not service.<E>, he explains, holding his hands out in front of him. To the right, and slightly behind him, a younger individual in a light-colored, patterned short-sleeved shirt and white shorts stands holding a rolled-up white document or poster. A large wooden cross draped with flowing purple fabric dominates the center-right of the stage, surrounded by several artificial rocks and dark steps. A large screen is visible in the background, slightly out of focus. The stage is bathed in selective lighting.. <AUDCAP>Male voice speaking clearly, consistent with a presentation or sermon, with a slight echo suggesting a large room or stage.<ENDAUDCAP>",
                            "example_prompts/pngs/13.png",
                            50,
                        ],

                    ],
                    inputs=[video_text_prompt, image, sample_steps],
                    outputs=[output_path],
                    fn=generate_video,
                    cache_examples=True,
                )

    run_btn.click(
        fn=generate_video,
        inputs=[video_text_prompt, image, sample_steps, session_state],
        outputs=[output_path],
    )

if __name__ == "__main__":
    demo.unload(cleanup)
    demo.queue()
    demo.launch(ssr_mode=False, share=True)