# Development Guide - Enhanced AI Agentic Browser Agent This document provides guidelines and information for developers who want to extend or contribute to the Enhanced AI Agentic Browser Agent Architecture. ## Architecture Overview The architecture follows a layered design pattern, with each layer responsible for specific functionality: ``` ┌───────────────────────────────────────────────────────┐ │ Agent Orchestrator │ └───────────────────────────────────────────────────────┘ ↑ ↑ ↑ ↑ │ │ │ │ ┌─────────────┐ ┌─────────┐ ┌─────────┐ ┌──────────────┐ │ Perception │ │ Browser │ │ Action │ │ Planning │ │ Layer │ │ Control │ │ Layer │ │ Layer │ └─────────────┘ └─────────┘ └─────────┘ └──────────────┘ ↑ ↑ ↑ ↑ │ │ │ │ ┌─────────────┐ ┌─────────┐ ┌─────────┐ ┌──────────────┐ │ Memory │ │ User │ │ A2A │ │ Security & │ │ Layer │ │ Layer │ │ Protocol│ │ Monitoring │ └─────────────┘ └─────────┘ └─────────┘ └──────────────┘ ``` ## Development Environment Setup ### Prerequisites 1. Python 3.9+ installed 2. Docker and Docker Compose installed 3. Required API keys for LFMs (OpenAI, Anthropic, Google) ### Initial Setup 1. Clone the repository and navigate to it: ```bash git clone https://github.com/your-org/agentic-browser.git cd agentic-browser ``` 2. Create and activate a virtual environment: ```bash python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate ``` 3. Install dependencies: ```bash pip install -r requirements.txt pip install -e . # Install in development mode ``` 4. Set up environment variables: ```bash cp .env.example .env # Edit .env file with your API keys and configuration ``` 5. Install browser automation dependencies: ```bash playwright install chromium playwright install-deps chromium ``` ## Project Structure - `src/` - Core application code - `perception/` - Web content analysis components - `browser_control/` - Browser automation components - `action_execution/` - Action execution components - `planning/` - Task planning components - `memory/` - Memory and learning components - `user_interaction/` - User interaction components - `a2a_protocol/` - Agent-to-agent communication components - `security/` - Security and ethics components - `monitoring/` - Metrics and monitoring components - `orchestrator.py` - Central orchestration component - `main.py` - FastAPI application - `examples/` - Example usage scripts - `tests/` - Unit and integration tests - `config/` - Configuration files - `prometheus/` - Prometheus configuration - `grafana/` - Grafana dashboard configuration - `docker-compose.yml` - Docker Compose configuration - `Dockerfile` - Docker image definition - `requirements.txt` - Python dependencies ## Running Tests ```bash # Run all tests pytest # Run specific test file pytest tests/test_browser_control.py # Run tests with coverage report pytest --cov=src ``` ## Code Style Guidelines This project follows PEP 8 style guidelines and uses type annotations: ```python def add_numbers(a: int, b: int) -> int: """ Add two numbers together. Args: a: First number b: Second number Returns: int: Sum of the two numbers """ return a + b ``` Use the following tools to maintain code quality: ```bash # Code formatting with black black src/ tests/ # Type checking with mypy mypy src/ # Linting with flake8 flake8 src/ tests/ ``` ## Adding New Components ### Creating a New Layer 1. Create a new directory under `src/` for your layer 2. Add an `__init__.py` file 3. Add your component classes 4. Update the orchestrator to integrate your layer ### Example: Adding a New Browser Action 1. Open `src/action_execution/action_executor.py` 2. Add a new method for your action: ```python async def _execute_new_action(self, config: Dict) -> Dict: """Execute a new custom action.""" # Implement your action logic here # ... return {"success": True, "result": "Action completed"} ``` 3. Add your action to the `execute_action` method's action type mapping: ```python elif action_type == "new_action": result = await self._execute_new_action(action_config) ``` ### Example: Adding a New AI Model Provider 1. Open `src/perception/multimodal_processor.py` 2. Add support for the new provider: ```python async def _analyze_with_new_provider_vision(self, base64_image, task_goal, ocr_text): """Use a new provider's vision model for analysis.""" # Implement the model-specific analysis logic # ... return response_data ``` ## Debugging ### Local Development Server Run the server in development mode for automatic reloading: ```bash python run_server.py --reload --log-level debug ``` ### Accessing Logs - Server logs: Standard output when running the server - Browser logs: Stored in `data/browser_logs.txt` when enabled - Prometheus metrics: Available at `http://localhost:9090` - Grafana dashboards: Available at `http://localhost:3000` ### Common Issues 1. **Browser automation fails** - Check if the browser binary is installed - Ensure proper permissions for browser process - Check network connectivity and proxy settings 2. **API calls fail** - Verify API keys in `.env` file - Check rate limiting on API provider side - Ensure network connectivity 3. **Memory issues** - Check vector database connectivity - Verify embedding dimensions match database configuration ## Deployment ### Docker Deployment ```bash # Build and start all services docker-compose up -d # View logs docker-compose logs -f browser-agent # Scale services docker-compose up -d --scale browser-agent=3 ``` ### Kubernetes Deployment Basic Kubernetes deployment files are provided in the `k8s/` directory: ```bash # Apply Kubernetes manifests kubectl apply -f k8s/ # Check status kubectl get pods -l app=agentic-browser ``` ## Continuous Integration This project uses GitHub Actions for CI/CD: - **Test workflow**: Runs tests on pull requests - **Build workflow**: Builds Docker image on merge to main - **Deploy workflow**: Deploys to staging environment on tag ## Performance Optimization For best performance: 1. Use API-first approach when possible instead of browser automation 2. Implement caching for frequent operations 3. Use batch processing for embedding generation 4. Scale horizontally for concurrent task processing ## Contribution Guidelines 1. Fork the repository 2. Create a feature branch: `git checkout -b feature-name` 3. Implement your changes 4. Add tests for new functionality 5. Ensure all tests pass: `pytest` 6. Submit a pull request ## Security Considerations - Never store API keys in the code - Validate all user inputs - Implement rate limiting for API endpoints - Follow least privilege principle - Regularly update dependencies