Spaces:
Sleeping
Sleeping
Oliver Hamilton
commited on
Commit
·
d7953e2
1
Parent(s):
bfca396
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,12 +4,19 @@ from geti_sdk.deployment import Deployment
|
|
| 4 |
from geti_sdk.utils import show_image_with_annotation_scene
|
| 5 |
import numpy as np
|
| 6 |
from urllib.request import urlopen
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Step 1: Load the deployment
|
| 9 |
deployment = Deployment.from_folder("deployment")
|
| 10 |
deployment.load_inference_models(device="CPU")
|
| 11 |
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
def resize_image(image, target_dimension):
|
| 14 |
height, width = image.shape[:2]
|
| 15 |
max_dimension = max(height, width)
|
|
@@ -22,17 +29,22 @@ def resize_image(image, target_dimension):
|
|
| 22 |
|
| 23 |
def infer(image=None, url:str=None):
|
| 24 |
if image is None and url is None:
|
| 25 |
-
return [None,'
|
| 26 |
|
| 27 |
if image is None:
|
| 28 |
if isinstance(url, str):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
req = urlopen(url)
|
| 30 |
arr = np.asarray(bytearray(req.read()), dtype=np.uint8)
|
| 31 |
image = cv2.imdecode(arr, -1)
|
| 32 |
if image is None:
|
| 33 |
-
return [None, f'Unable to fetch image from {url}']
|
| 34 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 35 |
|
|
|
|
| 36 |
image = resize_image(image, 1200)
|
| 37 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 38 |
prediction = deployment.infer(image)
|
|
|
|
| 4 |
from geti_sdk.utils import show_image_with_annotation_scene
|
| 5 |
import numpy as np
|
| 6 |
from urllib.request import urlopen
|
| 7 |
+
import re
|
| 8 |
+
|
| 9 |
|
| 10 |
# Step 1: Load the deployment
|
| 11 |
deployment = Deployment.from_folder("deployment")
|
| 12 |
deployment.load_inference_models(device="CPU")
|
| 13 |
|
| 14 |
|
| 15 |
+
def is_valid_url(url):
|
| 16 |
+
pattern = r'^(https?|ftp)://[^\s/$.?#].[^\s]*$'
|
| 17 |
+
return re.match(pattern, url) is not None
|
| 18 |
+
|
| 19 |
+
|
| 20 |
def resize_image(image, target_dimension):
|
| 21 |
height, width = image.shape[:2]
|
| 22 |
max_dimension = max(height, width)
|
|
|
|
| 29 |
|
| 30 |
def infer(image=None, url:str=None):
|
| 31 |
if image is None and url is None:
|
| 32 |
+
return [None,'Error: No image or URL provided']
|
| 33 |
|
| 34 |
if image is None:
|
| 35 |
if isinstance(url, str):
|
| 36 |
+
|
| 37 |
+
if not is_valid_url(url):
|
| 38 |
+
return [None,'Error: URL appears to be invalid']
|
| 39 |
+
|
| 40 |
req = urlopen(url)
|
| 41 |
arr = np.asarray(bytearray(req.read()), dtype=np.uint8)
|
| 42 |
image = cv2.imdecode(arr, -1)
|
| 43 |
if image is None:
|
| 44 |
+
return [None, f'Error: Unable to fetch image from {url}']
|
| 45 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 46 |
|
| 47 |
+
|
| 48 |
image = resize_image(image, 1200)
|
| 49 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 50 |
prediction = deployment.infer(image)
|