Spaces:
Runtime error
Runtime error
File size: 7,989 Bytes
d00bc89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import os
import torch
import numpy as np
import wave
import tempfile
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
from snac import SNAC
from huggingface_hub import login, upload_file, hf_hub_download, snapshot_download
from datetime import datetime, timezone, timedelta
# Login
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# Configuration from environment
MODEL_REPO = os.environ.get("MODEL_REPO", "isankhaa/or-my-model")
SUBFOLDER = os.environ.get("SUBFOLDER", "epoch-34")
BASE_MODEL = os.environ.get("BASE_MODEL", "canopylabs/orpheus-tts-0.1-pretrained")
OUTPUT_REPO = os.environ.get("OUTPUT_REPO", "isankhaa/or-my-model")
SAMPLE_RATE = 24000
VOICE = "mongolian"
print(f"Model: {MODEL_REPO}/{SUBFOLDER}")
# Global variables
model = None
tokenizer = None
snac = None
def load_models():
global model, tokenizer, snac
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
print(f"Loading model from {MODEL_REPO}/{SUBFOLDER}...")
model = AutoModelForCausalLM.from_pretrained(
MODEL_REPO,
subfolder=SUBFOLDER,
torch_dtype=torch.bfloat16,
device_map="cpu" # Load to CPU first, move to GPU in generate
)
model.eval()
print(f"Model loaded: {model.num_parameters():,} parameters")
print("Loading SNAC codec...")
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
print("All models loaded!")
# Load models at startup
load_models()
@spaces.GPU(duration=120)
def generate_speech(text, temperature=0.7, top_p=0.9, max_tokens=4096, upload_to_hf=False):
"""Generate speech from text using ZeroGPU"""
global model, tokenizer, snac
if not text.strip():
return None, "Error: Empty text"
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Move models to GPU
model.to(device)
snac.to(device)
try:
# Format prompt
prompt = f"{VOICE}: {text}"
text_tokens = tokenizer.encode(prompt, add_special_tokens=False)
# Build input
input_ids = [128259]
input_ids.extend(text_tokens)
input_ids.extend([128009, 128260])
input_tensor = torch.tensor([input_ids], device=device)
attention_mask = torch.ones_like(input_tensor)
print(f"Input tokens: {len(input_ids)}")
# Generate
with torch.inference_mode():
output = model.generate(
input_tensor,
attention_mask=attention_mask,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=1.1,
pad_token_id=128263,
eos_token_id=128257,
)
# Extract audio tokens
generated = output[0, len(input_ids):].tolist()
audio_tokens = []
for token_id in generated:
if 128266 <= token_id <= 156937:
audio_tokens.append(token_id)
elif token_id == 128257:
break
print(f"Generated {len(audio_tokens)} audio tokens")
if len(audio_tokens) < 7:
return None, f"Error: Only generated {len(audio_tokens)} audio tokens"
# Decode audio tokens
snac_tokens = []
for idx, token_id in enumerate(audio_tokens):
layer = idx % 7
snac_val = token_id - 128266 - (layer * 4096)
snac_tokens.append(snac_val)
num_frames = len(snac_tokens) // 7
snac_tokens = snac_tokens[:num_frames * 7]
codes_0, codes_1, codes_2 = [], [], []
for i in range(num_frames):
base = i * 7
codes_0.append(snac_tokens[base])
codes_1.append(snac_tokens[base + 1])
codes_1.append(snac_tokens[base + 4])
codes_2.append(snac_tokens[base + 2])
codes_2.append(snac_tokens[base + 3])
codes_2.append(snac_tokens[base + 5])
codes_2.append(snac_tokens[base + 6])
codes = [
torch.tensor([codes_0], device=device, dtype=torch.int32),
torch.tensor([codes_1], device=device, dtype=torch.int32),
torch.tensor([codes_2], device=device, dtype=torch.int32),
]
# Clip to valid range
for layer_idx, c in enumerate(codes):
codes[layer_idx] = torch.clamp(c, 0, 4095)
# Decode
with torch.inference_mode():
audio = snac.decode(codes)
audio_np = audio.squeeze().cpu().numpy()
duration = len(audio_np) / SAMPLE_RATE
# Save to temp file
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
audio_int16 = (audio_np * 32767).astype(np.int16)
with wave.open(temp_file.name, "w") as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(SAMPLE_RATE)
wav_file.writeframes(audio_int16.tobytes())
status = f"Success! Duration: {duration:.2f}s, Audio tokens: {len(audio_tokens)}"
# Upload to HuggingFace if requested
if upload_to_hf and HF_TOKEN:
try:
tz_mongolia = timezone(timedelta(hours=8))
timestamp = datetime.now(tz_mongolia).strftime("%Y-%m-%d_%H-%M")
output_file = f"{SUBFOLDER}-test-{timestamp}.wav"
upload_path = SUBFOLDER + "/test_output/" + output_file
upload_file(
path_or_fileobj=temp_file.name,
path_in_repo=upload_path,
repo_id=OUTPUT_REPO,
repo_type="model",
)
status += f"\nUploaded: https://huggingface.co/{OUTPUT_REPO}/blob/main/{upload_path}"
except Exception as e:
status += f"\nUpload failed: {e}"
return temp_file.name, status
except Exception as e:
return None, f"Error: {str(e)}"
finally:
# Move back to CPU to free GPU memory
model.to("cpu")
snac.to("cpu")
torch.cuda.empty_cache()
# Create Gradio interface
with gr.Blocks(title="Mongolian TTS (ZeroGPU)") as demo:
gr.Markdown(f"""
# 🎤 Mongolian Text-to-Speech
Orpheus TTS model fine-tuned for Mongolian language.
**Model:** {MODEL_REPO}/{SUBFOLDER}
Using HuggingFace ZeroGPU (FREE!)
""")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Text (Mongolian)",
placeholder="Энд монгол текст бичнэ үү...",
lines=3,
)
with gr.Row():
temperature = gr.Slider(0.1, 1.5, value=0.7, label="Temperature")
top_p = gr.Slider(0.1, 1.0, value=0.9, label="Top P")
max_tokens = gr.Slider(512, 8192, value=4096, step=512, label="Max Tokens")
upload_checkbox = gr.Checkbox(label="Upload to HuggingFace", value=True)
generate_btn = gr.Button("🎵 Generate Speech", variant="primary")
with gr.Column():
audio_output = gr.Audio(label="Generated Audio", type="filepath")
status_output = gr.Textbox(label="Status", lines=3)
generate_btn.click(
fn=generate_speech,
inputs=[text_input, temperature, top_p, max_tokens, upload_checkbox],
outputs=[audio_output, status_output],
)
gr.Examples(
examples=[
["Сайн байна уу, энэ бол монгол хэлний туршилт юм."],
["Өнөөдөр цаг агаар сайхан байна."],
["Дэд бүтэц, нийгмийн үйлчилгээний хүрээнд ч томоохон бүтээн байгуулалтууд хийгдэх юм."],
],
inputs=[text_input],
)
demo.launch()
|