Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,33 +1,29 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
-
from langdetect import detect
|
| 4 |
import torch
|
| 5 |
import torch.nn as nn
|
| 6 |
-
from transformers import DistilBertModel, AutoModel, AutoTokenizer
|
|
|
|
| 7 |
from huggingface_hub import snapshot_download
|
| 8 |
import os
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
app = FastAPI()
|
| 12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
os.environ["TRANSFORMERS_CACHE"] = hf_cache_dir
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
|
| 22 |
|
| 23 |
-
# ----------------------------
|
| 24 |
-
# Model classes
|
| 25 |
-
# ----------------------------
|
| 26 |
|
|
|
|
| 27 |
class ToxicBERT(nn.Module):
|
| 28 |
def __init__(self):
|
| 29 |
super().__init__()
|
| 30 |
-
self.bert = DistilBertModel.from_pretrained(
|
| 31 |
self.dropout = nn.Dropout(0.3)
|
| 32 |
self.classifier = nn.Linear(self.bert.config.hidden_size, 6)
|
| 33 |
|
|
@@ -36,10 +32,11 @@ class ToxicBERT(nn.Module):
|
|
| 36 |
return self.classifier(self.dropout(output))
|
| 37 |
|
| 38 |
|
|
|
|
| 39 |
class HinglishToxicClassifier(nn.Module):
|
| 40 |
def __init__(self):
|
| 41 |
super().__init__()
|
| 42 |
-
self.bert = AutoModel.from_pretrained(
|
| 43 |
hidden_size = self.bert.config.hidden_size
|
| 44 |
self.pool = lambda hidden: torch.cat([
|
| 45 |
hidden.mean(dim=1),
|
|
@@ -58,49 +55,50 @@ class HinglishToxicClassifier(nn.Module):
|
|
| 58 |
x = self.bottleneck(pooled)
|
| 59 |
return self.classifier(x)
|
| 60 |
|
| 61 |
-
# ----------------------------
|
| 62 |
-
# Load Models & Tokenizers
|
| 63 |
-
# ----------------------------
|
| 64 |
|
|
|
|
| 65 |
english_model = ToxicBERT().to(device)
|
| 66 |
-
english_model.load_state_dict(torch.load("bert_toxic_classifier.pt", map_location=device))
|
| 67 |
english_model.eval()
|
| 68 |
-
english_tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
| 69 |
|
| 70 |
hinglish_model = HinglishToxicClassifier().to(device)
|
| 71 |
-
hinglish_model.load_state_dict(torch.load("best_hinglish_model.pt", map_location=device))
|
| 72 |
hinglish_model.eval()
|
| 73 |
-
hinglish_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
| 74 |
|
| 75 |
-
#
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
class
|
| 80 |
text: str
|
| 81 |
|
|
|
|
| 82 |
@app.post("/predict")
|
| 83 |
-
|
| 84 |
-
text =
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
if lang == "en":
|
| 88 |
-
|
|
|
|
|
|
|
| 89 |
with torch.no_grad():
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
return {
|
| 93 |
-
|
| 94 |
-
"classes": ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"],
|
| 95 |
-
"probabilities": probs
|
| 96 |
-
}
|
| 97 |
else:
|
| 98 |
-
|
|
|
|
|
|
|
| 99 |
with torch.no_grad():
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
return {
|
| 103 |
-
"language": "hinglish",
|
| 104 |
-
"classes": ["toxic", "non-toxic"],
|
| 105 |
-
"probabilities": probs
|
| 106 |
-
}
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Request
|
| 2 |
from pydantic import BaseModel
|
|
|
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
+
from transformers import DistilBertTokenizer, DistilBertModel, AutoModel, AutoTokenizer
|
| 6 |
+
from langdetect import detect
|
| 7 |
from huggingface_hub import snapshot_download
|
| 8 |
import os
|
| 9 |
|
| 10 |
+
# Device
|
|
|
|
| 11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
|
| 13 |
+
# Download model repos from HF Hub
|
| 14 |
+
english_repo = snapshot_download("koyu008/English_Toxic_Classifier")
|
| 15 |
+
hinglish_repo = snapshot_download("koyu008/HInglish_comment_classifier")
|
|
|
|
| 16 |
|
| 17 |
+
# Tokenizers
|
| 18 |
+
english_tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
| 19 |
+
hinglish_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
| 20 |
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
# English Model
|
| 23 |
class ToxicBERT(nn.Module):
|
| 24 |
def __init__(self):
|
| 25 |
super().__init__()
|
| 26 |
+
self.bert = DistilBertModel.from_pretrained("distilbert-base-uncased")
|
| 27 |
self.dropout = nn.Dropout(0.3)
|
| 28 |
self.classifier = nn.Linear(self.bert.config.hidden_size, 6)
|
| 29 |
|
|
|
|
| 32 |
return self.classifier(self.dropout(output))
|
| 33 |
|
| 34 |
|
| 35 |
+
# Hinglish Model
|
| 36 |
class HinglishToxicClassifier(nn.Module):
|
| 37 |
def __init__(self):
|
| 38 |
super().__init__()
|
| 39 |
+
self.bert = AutoModel.from_pretrained("xlm-roberta-base")
|
| 40 |
hidden_size = self.bert.config.hidden_size
|
| 41 |
self.pool = lambda hidden: torch.cat([
|
| 42 |
hidden.mean(dim=1),
|
|
|
|
| 55 |
x = self.bottleneck(pooled)
|
| 56 |
return self.classifier(x)
|
| 57 |
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# Instantiate and load models
|
| 60 |
english_model = ToxicBERT().to(device)
|
| 61 |
+
english_model.load_state_dict(torch.load(os.path.join(english_repo, "bert_toxic_classifier.pt"), map_location=device))
|
| 62 |
english_model.eval()
|
|
|
|
| 63 |
|
| 64 |
hinglish_model = HinglishToxicClassifier().to(device)
|
| 65 |
+
hinglish_model.load_state_dict(torch.load(os.path.join(hinglish_repo, "best_hinglish_model.pt"), map_location=device))
|
| 66 |
hinglish_model.eval()
|
|
|
|
| 67 |
|
| 68 |
+
# Labels
|
| 69 |
+
english_labels = ['toxic', 'severe toxic', 'obscene', 'threat', 'insult', 'identity hate']
|
| 70 |
+
hinglish_labels = ['not toxic', 'toxic']
|
| 71 |
+
|
| 72 |
+
# FastAPI
|
| 73 |
+
app = FastAPI()
|
| 74 |
+
|
| 75 |
|
| 76 |
+
class TextIn(BaseModel):
|
| 77 |
text: str
|
| 78 |
|
| 79 |
+
|
| 80 |
@app.post("/predict")
|
| 81 |
+
def predict(data: TextIn):
|
| 82 |
+
text = data.text
|
| 83 |
+
try:
|
| 84 |
+
lang = detect(text)
|
| 85 |
+
except:
|
| 86 |
+
lang = "unknown"
|
| 87 |
|
| 88 |
if lang == "en":
|
| 89 |
+
tokenizer = english_tokenizer
|
| 90 |
+
model = english_model
|
| 91 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
|
| 92 |
with torch.no_grad():
|
| 93 |
+
outputs = model(**inputs)
|
| 94 |
+
probs = torch.sigmoid(outputs).squeeze().cpu().tolist()
|
| 95 |
+
return {"language": "English", "predictions": dict(zip(english_labels, probs))}
|
| 96 |
+
|
|
|
|
|
|
|
|
|
|
| 97 |
else:
|
| 98 |
+
tokenizer = hinglish_tokenizer
|
| 99 |
+
model = hinglish_model
|
| 100 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
|
| 101 |
with torch.no_grad():
|
| 102 |
+
outputs = model(**inputs)
|
| 103 |
+
probs = torch.softmax(outputs, dim=1).squeeze().cpu().tolist()
|
| 104 |
+
return {"language": "Hinglish", "predictions": dict(zip(hinglish_labels, probs))}
|
|
|
|
|
|
|
|
|
|
|
|