Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from langdetect import detect
|
| 4 |
import torch
|
|
@@ -7,22 +7,27 @@ from transformers import DistilBertModel, AutoModel, AutoTokenizer, DistilBertTo
|
|
| 7 |
from huggingface_hub import snapshot_download
|
| 8 |
import os
|
| 9 |
|
|
|
|
| 10 |
app = FastAPI()
|
|
|
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
os.makedirs(
|
|
|
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
# Model
|
| 20 |
-
#
|
| 21 |
|
| 22 |
class ToxicBERT(nn.Module):
|
| 23 |
def __init__(self):
|
| 24 |
super().__init__()
|
| 25 |
-
self.bert = DistilBertModel.from_pretrained(
|
| 26 |
self.dropout = nn.Dropout(0.3)
|
| 27 |
self.classifier = nn.Linear(self.bert.config.hidden_size, 6)
|
| 28 |
|
|
@@ -30,10 +35,11 @@ class ToxicBERT(nn.Module):
|
|
| 30 |
output = self.bert(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state[:, 0]
|
| 31 |
return self.classifier(self.dropout(output))
|
| 32 |
|
|
|
|
| 33 |
class HinglishToxicClassifier(nn.Module):
|
| 34 |
def __init__(self):
|
| 35 |
super().__init__()
|
| 36 |
-
self.bert = AutoModel.from_pretrained(
|
| 37 |
hidden_size = self.bert.config.hidden_size
|
| 38 |
self.pool = lambda hidden: torch.cat([
|
| 39 |
hidden.mean(dim=1),
|
|
@@ -52,9 +58,9 @@ class HinglishToxicClassifier(nn.Module):
|
|
| 52 |
x = self.bottleneck(pooled)
|
| 53 |
return self.classifier(x)
|
| 54 |
|
| 55 |
-
#
|
| 56 |
-
# Load Models
|
| 57 |
-
#
|
| 58 |
|
| 59 |
english_model = ToxicBERT().to(device)
|
| 60 |
english_model.load_state_dict(torch.load("bert_toxic_classifier.pt", map_location=device))
|
|
@@ -66,9 +72,9 @@ hinglish_model.load_state_dict(torch.load("best_hinglish_model.pt", map_location
|
|
| 66 |
hinglish_model.eval()
|
| 67 |
hinglish_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
| 68 |
|
| 69 |
-
#
|
| 70 |
-
#
|
| 71 |
-
#
|
| 72 |
|
| 73 |
class InputText(BaseModel):
|
| 74 |
text: str
|
|
@@ -83,10 +89,18 @@ async def predict(input: InputText):
|
|
| 83 |
with torch.no_grad():
|
| 84 |
logits = english_model(**inputs)
|
| 85 |
probs = torch.softmax(logits, dim=1).cpu().numpy().tolist()[0]
|
| 86 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
else:
|
| 88 |
inputs = hinglish_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 89 |
with torch.no_grad():
|
| 90 |
logits = hinglish_model(**inputs)
|
| 91 |
probs = torch.softmax(logits, dim=1).cpu().numpy().tolist()[0]
|
| 92 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from langdetect import detect
|
| 4 |
import torch
|
|
|
|
| 7 |
from huggingface_hub import snapshot_download
|
| 8 |
import os
|
| 9 |
|
| 10 |
+
# App and device
|
| 11 |
app = FastAPI()
|
| 12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
|
| 14 |
+
# Create safe local cache directory
|
| 15 |
+
hf_cache_dir = "./hf_cache"
|
| 16 |
+
os.makedirs(hf_cache_dir, exist_ok=True)
|
| 17 |
+
os.environ["TRANSFORMERS_CACHE"] = hf_cache_dir
|
| 18 |
|
| 19 |
+
# Download model repositories to local path
|
| 20 |
+
english_path = snapshot_download("koyu008/English_Toxic_Classifier", cache_dir=hf_cache_dir)
|
| 21 |
+
hinglish_path = snapshot_download("koyu008/Hinglish_comment_classifier", cache_dir=hf_cache_dir)
|
| 22 |
|
| 23 |
+
# ----------------------------
|
| 24 |
+
# Model classes
|
| 25 |
+
# ----------------------------
|
| 26 |
|
| 27 |
class ToxicBERT(nn.Module):
|
| 28 |
def __init__(self):
|
| 29 |
super().__init__()
|
| 30 |
+
self.bert = DistilBertModel.from_pretrained(english_path)
|
| 31 |
self.dropout = nn.Dropout(0.3)
|
| 32 |
self.classifier = nn.Linear(self.bert.config.hidden_size, 6)
|
| 33 |
|
|
|
|
| 35 |
output = self.bert(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state[:, 0]
|
| 36 |
return self.classifier(self.dropout(output))
|
| 37 |
|
| 38 |
+
|
| 39 |
class HinglishToxicClassifier(nn.Module):
|
| 40 |
def __init__(self):
|
| 41 |
super().__init__()
|
| 42 |
+
self.bert = AutoModel.from_pretrained(hinglish_path)
|
| 43 |
hidden_size = self.bert.config.hidden_size
|
| 44 |
self.pool = lambda hidden: torch.cat([
|
| 45 |
hidden.mean(dim=1),
|
|
|
|
| 58 |
x = self.bottleneck(pooled)
|
| 59 |
return self.classifier(x)
|
| 60 |
|
| 61 |
+
# ----------------------------
|
| 62 |
+
# Load Models & Tokenizers
|
| 63 |
+
# ----------------------------
|
| 64 |
|
| 65 |
english_model = ToxicBERT().to(device)
|
| 66 |
english_model.load_state_dict(torch.load("bert_toxic_classifier.pt", map_location=device))
|
|
|
|
| 72 |
hinglish_model.eval()
|
| 73 |
hinglish_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
| 74 |
|
| 75 |
+
# ----------------------------
|
| 76 |
+
# API
|
| 77 |
+
# ----------------------------
|
| 78 |
|
| 79 |
class InputText(BaseModel):
|
| 80 |
text: str
|
|
|
|
| 89 |
with torch.no_grad():
|
| 90 |
logits = english_model(**inputs)
|
| 91 |
probs = torch.softmax(logits, dim=1).cpu().numpy().tolist()[0]
|
| 92 |
+
return {
|
| 93 |
+
"language": "english",
|
| 94 |
+
"classes": ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"],
|
| 95 |
+
"probabilities": probs
|
| 96 |
+
}
|
| 97 |
else:
|
| 98 |
inputs = hinglish_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 99 |
with torch.no_grad():
|
| 100 |
logits = hinglish_model(**inputs)
|
| 101 |
probs = torch.softmax(logits, dim=1).cpu().numpy().tolist()[0]
|
| 102 |
+
return {
|
| 103 |
+
"language": "hinglish",
|
| 104 |
+
"classes": ["toxic", "non-toxic"],
|
| 105 |
+
"probabilities": probs
|
| 106 |
+
}
|