Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,7 @@ import tempfile
|
|
| 4 |
import os
|
| 5 |
from datetime import datetime
|
| 6 |
import numpy as np
|
| 7 |
-
import
|
| 8 |
|
| 9 |
from statsforecast import StatsForecast
|
| 10 |
from statsforecast.models import (
|
|
@@ -28,7 +28,41 @@ from utilsforecast.losses import *
|
|
| 28 |
from mlforecast import MLForecast
|
| 29 |
from lightgbm import LGBMRegressor
|
| 30 |
|
| 31 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
def create_forecast_plot(forecast_df, original_df, title="Forecasting Results", horizon=None, freq='D'):
|
| 33 |
plt.figure(figsize=(12, 7))
|
| 34 |
unique_ids = forecast_df['unique_id'].unique()
|
|
@@ -88,22 +122,6 @@ def create_forecast_plot(forecast_df, original_df, title="Forecasting Results",
|
|
| 88 |
|
| 89 |
return fig
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
# Foundation Models
|
| 94 |
-
try:
|
| 95 |
-
from chronos import ChronosPipeline
|
| 96 |
-
import torch
|
| 97 |
-
CHRONOS_AVAILABLE = True
|
| 98 |
-
except:
|
| 99 |
-
CHRONOS_AVAILABLE = False
|
| 100 |
-
|
| 101 |
-
try:
|
| 102 |
-
from uni2ts.model.moirai import MoiraiForecast
|
| 103 |
-
MOIRAI_AVAILABLE = True
|
| 104 |
-
except:
|
| 105 |
-
MOIRAI_AVAILABLE = False
|
| 106 |
-
|
| 107 |
# Function to load and process uploaded CSV
|
| 108 |
def load_data(file):
|
| 109 |
if file is None:
|
|
@@ -125,28 +143,6 @@ def load_data(file):
|
|
| 125 |
return df, "Data loaded successfully!"
|
| 126 |
except Exception as e:
|
| 127 |
return None, f"Error loading data: {str(e)}"
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
# Helper function to calculate date offset based on frequency and horizon
|
| 131 |
-
def calculate_date_offset(freq, horizon):
|
| 132 |
-
"""Calculate a timedelta based on frequency code and horizon"""
|
| 133 |
-
if freq == 'H':
|
| 134 |
-
return pd.Timedelta(hours=horizon)
|
| 135 |
-
elif freq == 'D':
|
| 136 |
-
return pd.Timedelta(days=horizon)
|
| 137 |
-
elif freq == 'B':
|
| 138 |
-
return pd.Timedelta(days=int(horizon * 1.4))
|
| 139 |
-
elif freq == 'WS':
|
| 140 |
-
return pd.Timedelta(weeks=horizon)
|
| 141 |
-
elif freq == 'MS':
|
| 142 |
-
return pd.Timedelta(days=horizon * 30)
|
| 143 |
-
elif freq == 'QS':
|
| 144 |
-
return pd.Timedelta(days=horizon * 90)
|
| 145 |
-
elif freq == 'YS':
|
| 146 |
-
return pd.Timedelta(days=horizon * 365)
|
| 147 |
-
else:
|
| 148 |
-
return pd.Timedelta(days=horizon)
|
| 149 |
-
|
| 150 |
|
| 151 |
# Main forecasting function
|
| 152 |
def run_forecast(
|
|
@@ -170,9 +166,6 @@ def run_forecast(
|
|
| 170 |
# Prepare data - only required columns for models without predictors
|
| 171 |
df_basic = df[['unique_id', 'ds', 'y']].copy()
|
| 172 |
|
| 173 |
-
# For models that need predictors, prepare full feature set
|
| 174 |
-
# (This would be expanded based on your feature engineering)
|
| 175 |
-
|
| 176 |
# Initialize models list
|
| 177 |
models = []
|
| 178 |
models_need_predictors = []
|
|
@@ -220,7 +213,7 @@ def run_forecast(
|
|
| 220 |
if models_need_predictors:
|
| 221 |
sf_pred = StatsForecast(models=models_need_predictors, freq=frequency, n_jobs=-1)
|
| 222 |
cv_df_pred = sf_pred.cross_validation(
|
| 223 |
-
df=df_basic,
|
| 224 |
h=int(h),
|
| 225 |
step_size=int(step_size),
|
| 226 |
n_windows=int(num_windows)
|
|
@@ -235,7 +228,6 @@ def run_forecast(
|
|
| 235 |
return None, None, None, None, None, [], "No models selected"
|
| 236 |
|
| 237 |
else: # Fixed Window
|
| 238 |
-
# Similar logic for fixed window
|
| 239 |
# Split data
|
| 240 |
train_df = []
|
| 241 |
for uid in df_basic['unique_id'].unique():
|
|
@@ -396,8 +388,6 @@ def run_forecast(
|
|
| 396 |
error_msg = f"Error: {str(e)}\n\n{traceback.format_exc()}"
|
| 397 |
return None, None, None, None, None, [], error_msg
|
| 398 |
|
| 399 |
-
|
| 400 |
-
|
| 401 |
# Gradio Interface
|
| 402 |
with gr.Blocks(title="Duke Energy Forecasting App") as app:
|
| 403 |
gr.Markdown("""
|
|
|
|
| 4 |
import os
|
| 5 |
from datetime import datetime
|
| 6 |
import numpy as np
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
|
| 9 |
from statsforecast import StatsForecast
|
| 10 |
from statsforecast.models import (
|
|
|
|
| 28 |
from mlforecast import MLForecast
|
| 29 |
from lightgbm import LGBMRegressor
|
| 30 |
|
| 31 |
+
# Foundation Models
|
| 32 |
+
try:
|
| 33 |
+
from chronos import ChronosPipeline
|
| 34 |
+
import torch
|
| 35 |
+
CHRONOS_AVAILABLE = True
|
| 36 |
+
except:
|
| 37 |
+
CHRONOS_AVAILABLE = False
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
from uni2ts.model.moirai import MoiraiForecast
|
| 41 |
+
MOIRAI_AVAILABLE = True
|
| 42 |
+
except:
|
| 43 |
+
MOIRAI_AVAILABLE = False
|
| 44 |
+
|
| 45 |
+
# Helper function to calculate date offset based on frequency and horizon
|
| 46 |
+
def calculate_date_offset(freq, horizon):
|
| 47 |
+
"""Calculate a timedelta based on frequency code and horizon"""
|
| 48 |
+
if freq == 'H':
|
| 49 |
+
return pd.Timedelta(hours=horizon)
|
| 50 |
+
elif freq == 'D':
|
| 51 |
+
return pd.Timedelta(days=horizon)
|
| 52 |
+
elif freq == 'B':
|
| 53 |
+
return pd.Timedelta(days=int(horizon * 1.4))
|
| 54 |
+
elif freq == 'WS':
|
| 55 |
+
return pd.Timedelta(weeks=horizon)
|
| 56 |
+
elif freq == 'MS':
|
| 57 |
+
return pd.Timedelta(days=horizon * 30)
|
| 58 |
+
elif freq == 'QS':
|
| 59 |
+
return pd.Timedelta(days=horizon * 90)
|
| 60 |
+
elif freq == 'YS':
|
| 61 |
+
return pd.Timedelta(days=horizon * 365)
|
| 62 |
+
else:
|
| 63 |
+
return pd.Timedelta(days=horizon)
|
| 64 |
+
|
| 65 |
+
# Function to generate and return a plot for validation results
|
| 66 |
def create_forecast_plot(forecast_df, original_df, title="Forecasting Results", horizon=None, freq='D'):
|
| 67 |
plt.figure(figsize=(12, 7))
|
| 68 |
unique_ids = forecast_df['unique_id'].unique()
|
|
|
|
| 122 |
|
| 123 |
return fig
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
# Function to load and process uploaded CSV
|
| 126 |
def load_data(file):
|
| 127 |
if file is None:
|
|
|
|
| 143 |
return df, "Data loaded successfully!"
|
| 144 |
except Exception as e:
|
| 145 |
return None, f"Error loading data: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
# Main forecasting function
|
| 148 |
def run_forecast(
|
|
|
|
| 166 |
# Prepare data - only required columns for models without predictors
|
| 167 |
df_basic = df[['unique_id', 'ds', 'y']].copy()
|
| 168 |
|
|
|
|
|
|
|
|
|
|
| 169 |
# Initialize models list
|
| 170 |
models = []
|
| 171 |
models_need_predictors = []
|
|
|
|
| 213 |
if models_need_predictors:
|
| 214 |
sf_pred = StatsForecast(models=models_need_predictors, freq=frequency, n_jobs=-1)
|
| 215 |
cv_df_pred = sf_pred.cross_validation(
|
| 216 |
+
df=df_basic,
|
| 217 |
h=int(h),
|
| 218 |
step_size=int(step_size),
|
| 219 |
n_windows=int(num_windows)
|
|
|
|
| 228 |
return None, None, None, None, None, [], "No models selected"
|
| 229 |
|
| 230 |
else: # Fixed Window
|
|
|
|
| 231 |
# Split data
|
| 232 |
train_df = []
|
| 233 |
for uid in df_basic['unique_id'].unique():
|
|
|
|
| 388 |
error_msg = f"Error: {str(e)}\n\n{traceback.format_exc()}"
|
| 389 |
return None, None, None, None, None, [], error_msg
|
| 390 |
|
|
|
|
|
|
|
| 391 |
# Gradio Interface
|
| 392 |
with gr.Blocks(title="Duke Energy Forecasting App") as app:
|
| 393 |
gr.Markdown("""
|