Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,35 @@
|
|
| 1 |
-
|
| 2 |
-
import
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 4 |
-
from threading import Thread
|
| 5 |
from datetime import datetime
|
|
|
|
|
|
|
| 6 |
import pandas as pd
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
#
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
# Small, free
|
| 11 |
DEFAULT_MODELS = [
|
|
|
|
| 12 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 13 |
"Qwen/Qwen2.5-1.5B-Instruct",
|
| 14 |
]
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def _load_model(model_id: str):
|
| 20 |
"""Load tokenizer and model (cached)."""
|
|
@@ -22,26 +37,36 @@ def _load_model(model_id: str):
|
|
| 22 |
return _MODEL_CACHE[model_id]
|
| 23 |
|
| 24 |
tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
| 25 |
-
# bfloat16 works on many CPUs and GPUs; fall back to float32 if needed
|
| 26 |
-
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
model = AutoModelForCausalLM.from_pretrained(
|
| 29 |
model_id,
|
| 30 |
torch_dtype=dtype,
|
| 31 |
low_cpu_mem_usage=True,
|
| 32 |
device_map="auto",
|
| 33 |
)
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
_MODEL_CACHE[model_id] = (tok, model)
|
| 36 |
return tok, model
|
| 37 |
|
|
|
|
| 38 |
def _format_prompt(tokenizer, system_prompt: str, user_prompt: str) -> str:
|
| 39 |
"""
|
| 40 |
-
|
| 41 |
-
create a simple system+user concatenation.
|
| 42 |
"""
|
| 43 |
-
sys =
|
| 44 |
-
usr = user_prompt.strip()
|
| 45 |
|
| 46 |
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template:
|
| 47 |
messages = []
|
|
@@ -53,12 +78,11 @@ def _format_prompt(tokenizer, system_prompt: str, user_prompt: str) -> str:
|
|
| 53 |
tokenize=False,
|
| 54 |
add_generation_prompt=True,
|
| 55 |
)
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
if sys
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
return prompt
|
| 62 |
|
| 63 |
def generate_batch(
|
| 64 |
model_id: str,
|
|
@@ -69,72 +93,72 @@ def generate_batch(
|
|
| 69 |
top_p: float,
|
| 70 |
top_k: int,
|
| 71 |
repetition_penalty: float,
|
| 72 |
-
):
|
| 73 |
-
"""Generate for multiple user prompts (one per line)."""
|
| 74 |
tok, model = _load_model(model_id)
|
| 75 |
device = model.device
|
| 76 |
|
| 77 |
-
# Split lines,
|
| 78 |
prompts = [p.strip() for p in prompts_multiline.splitlines() if p.strip()]
|
| 79 |
if not prompts:
|
| 80 |
return pd.DataFrame([{"user_prompt": "", "response": "", "tokens_out": 0}])
|
| 81 |
|
| 82 |
-
#
|
| 83 |
formatted = [_format_prompt(tok, system_prompt, p) for p in prompts]
|
| 84 |
-
|
|
|
|
| 85 |
formatted,
|
| 86 |
return_tensors="pt",
|
| 87 |
padding=True,
|
| 88 |
truncation=True,
|
| 89 |
).to(device)
|
| 90 |
|
|
|
|
|
|
|
|
|
|
| 91 |
with torch.no_grad():
|
| 92 |
-
|
| 93 |
-
**
|
| 94 |
-
max_new_tokens=max_new_tokens,
|
| 95 |
do_sample=(temperature > 0.0),
|
| 96 |
-
temperature=temperature if temperature > 0 else None,
|
| 97 |
-
top_p=top_p,
|
| 98 |
-
top_k=top_k if top_k > 0 else None,
|
| 99 |
-
repetition_penalty=repetition_penalty,
|
| 100 |
eos_token_id=tok.eos_token_id,
|
| 101 |
-
pad_token_id=tok.
|
| 102 |
)
|
| 103 |
|
| 104 |
-
# Slice
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
gen_texts.append(resp)
|
| 114 |
|
| 115 |
df = pd.DataFrame(
|
| 116 |
{
|
| 117 |
"user_prompt": prompts,
|
| 118 |
-
"response":
|
| 119 |
-
"tokens_out":
|
| 120 |
}
|
| 121 |
)
|
| 122 |
return df
|
| 123 |
|
| 124 |
-
def to_csv(df: pd.DataFrame):
|
| 125 |
-
ts = datetime.utcnow().strftime("%Y%m%d-%H%M%S")
|
| 126 |
-
path = f"/tmp/batch_{ts}.csv"
|
| 127 |
-
df.to_csv(path, index=False)
|
| 128 |
-
return path
|
| 129 |
|
| 130 |
-
#
|
|
|
|
|
|
|
| 131 |
|
| 132 |
with gr.Blocks(title="Multi-Prompt Chat (System Prompt Control)") as demo:
|
| 133 |
gr.Markdown(
|
| 134 |
"""
|
| 135 |
-
# 🧪 Multi-Prompt Chat for HF Space
|
| 136 |
-
Pick a small free model, set a **system prompt**, and enter **multiple user prompts** (one per line).
|
| 137 |
-
Click **Generate** to get batched responses
|
| 138 |
"""
|
| 139 |
)
|
| 140 |
|
|
@@ -153,7 +177,7 @@ with gr.Blocks(title="Multi-Prompt Chat (System Prompt Control)") as demo:
|
|
| 153 |
)
|
| 154 |
prompts_multiline = gr.Textbox(
|
| 155 |
label="User prompts (one per line)",
|
| 156 |
-
placeholder="
|
| 157 |
lines=10,
|
| 158 |
)
|
| 159 |
|
|
@@ -161,13 +185,15 @@ with gr.Blocks(title="Multi-Prompt Chat (System Prompt Control)") as demo:
|
|
| 161 |
max_new_tokens = gr.Slider(16, 1024, value=256, step=1, label="max_new_tokens")
|
| 162 |
temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="temperature")
|
| 163 |
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="top_p")
|
| 164 |
-
top_k = gr.Slider(0, 200, value=40, step=1, label="top_k (0
|
| 165 |
repetition_penalty = gr.Slider(1.0, 2.0, value=1.1, step=0.01, label="repetition_penalty")
|
| 166 |
|
| 167 |
run_btn = gr.Button("Generate", variant="primary")
|
| 168 |
-
csv_btn = gr.Button("Download CSV")
|
| 169 |
|
| 170 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
| 171 |
out_df = gr.Dataframe(
|
| 172 |
headers=["user_prompt", "response", "tokens_out"],
|
| 173 |
datatype=["str", "str", "number"],
|
|
@@ -175,11 +201,18 @@ with gr.Blocks(title="Multi-Prompt Chat (System Prompt Control)") as demo:
|
|
| 175 |
wrap=True,
|
| 176 |
interactive=False,
|
| 177 |
row_count=(0, "dynamic"),
|
| 178 |
-
type="pandas",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
)
|
| 180 |
-
out_file = gr.File(label="CSV file", visible=False)
|
| 181 |
|
| 182 |
-
|
|
|
|
|
|
|
| 183 |
df = generate_batch(
|
| 184 |
model_id=model_id,
|
| 185 |
system_prompt=system_prompt,
|
|
@@ -190,20 +223,23 @@ with gr.Blocks(title="Multi-Prompt Chat (System Prompt Control)") as demo:
|
|
| 190 |
top_k=int(top_k),
|
| 191 |
repetition_penalty=float(repetition_penalty),
|
| 192 |
)
|
| 193 |
-
return df
|
| 194 |
|
| 195 |
-
def _download(df):
|
| 196 |
-
path = to_csv(df)
|
| 197 |
-
return gr.File.update(value=path, visible=True)
|
| 198 |
-
|
| 199 |
run_btn.click(
|
| 200 |
-
|
| 201 |
inputs=[model_id, system_prompt, prompts_multiline, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 202 |
-
outputs=out_df,
|
| 203 |
api_name="generate_batch",
|
| 204 |
)
|
| 205 |
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
if __name__ == "__main__":
|
| 209 |
demo.launch()
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import io
|
|
|
|
|
|
|
| 3 |
from datetime import datetime
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
import pandas as pd
|
| 7 |
+
import torch
|
| 8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 9 |
|
| 10 |
+
# ----------------------------
|
| 11 |
+
# Config
|
| 12 |
+
# ----------------------------
|
| 13 |
|
| 14 |
+
# Small, free, instruction-tuned models that run on CPU in a Basic Space.
|
| 15 |
DEFAULT_MODELS = [
|
| 16 |
+
"google/gemma-2-2b-it",
|
| 17 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 18 |
"Qwen/Qwen2.5-1.5B-Instruct",
|
| 19 |
]
|
| 20 |
|
| 21 |
+
_MODEL_CACHE = {} # (tokenizer, model) cache
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# ----------------------------
|
| 25 |
+
# Utilities
|
| 26 |
+
# ----------------------------
|
| 27 |
+
|
| 28 |
+
def df_to_csv_bytes(df: pd.DataFrame) -> bytes:
|
| 29 |
+
buf = io.StringIO()
|
| 30 |
+
df.to_csv(buf, index=False)
|
| 31 |
+
return buf.getvalue().encode("utf-8")
|
| 32 |
+
|
| 33 |
|
| 34 |
def _load_model(model_id: str):
|
| 35 |
"""Load tokenizer and model (cached)."""
|
|
|
|
| 37 |
return _MODEL_CACHE[model_id]
|
| 38 |
|
| 39 |
tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
# Ensure we have a pad token to avoid warnings in generate
|
| 42 |
+
if tok.pad_token is None:
|
| 43 |
+
# Prefer eos_token, else add a pad token
|
| 44 |
+
if tok.eos_token is not None:
|
| 45 |
+
tok.pad_token = tok.eos_token
|
| 46 |
+
else:
|
| 47 |
+
tok.add_special_tokens({"pad_token": "<|pad|>"})
|
| 48 |
+
|
| 49 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 50 |
model = AutoModelForCausalLM.from_pretrained(
|
| 51 |
model_id,
|
| 52 |
torch_dtype=dtype,
|
| 53 |
low_cpu_mem_usage=True,
|
| 54 |
device_map="auto",
|
| 55 |
)
|
| 56 |
+
# If we added a pad token, resize embeddings
|
| 57 |
+
if model.get_input_embeddings().num_embeddings != len(tok):
|
| 58 |
+
model.resize_token_embeddings(len(tok))
|
| 59 |
|
| 60 |
_MODEL_CACHE[model_id] = (tok, model)
|
| 61 |
return tok, model
|
| 62 |
|
| 63 |
+
|
| 64 |
def _format_prompt(tokenizer, system_prompt: str, user_prompt: str) -> str:
|
| 65 |
"""
|
| 66 |
+
Prefer the model's chat template. Fallback to a light instruction format.
|
|
|
|
| 67 |
"""
|
| 68 |
+
sys = (system_prompt or "").strip()
|
| 69 |
+
usr = (user_prompt or "").strip()
|
| 70 |
|
| 71 |
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template:
|
| 72 |
messages = []
|
|
|
|
| 78 |
tokenize=False,
|
| 79 |
add_generation_prompt=True,
|
| 80 |
)
|
| 81 |
+
|
| 82 |
+
# Fallback format
|
| 83 |
+
prefix = f"<<SYS>>\n{sys}\n<</SYS>>\n\n" if sys else ""
|
| 84 |
+
return f"{prefix}<<USER>>\n{usr}\n<</USER>>\n<<ASSISTANT>>\n"
|
| 85 |
+
|
|
|
|
| 86 |
|
| 87 |
def generate_batch(
|
| 88 |
model_id: str,
|
|
|
|
| 93 |
top_p: float,
|
| 94 |
top_k: int,
|
| 95 |
repetition_penalty: float,
|
| 96 |
+
) -> pd.DataFrame:
|
| 97 |
+
"""Generate responses for multiple user prompts (one per line)."""
|
| 98 |
tok, model = _load_model(model_id)
|
| 99 |
device = model.device
|
| 100 |
|
| 101 |
+
# Split lines, discard empties
|
| 102 |
prompts = [p.strip() for p in prompts_multiline.splitlines() if p.strip()]
|
| 103 |
if not prompts:
|
| 104 |
return pd.DataFrame([{"user_prompt": "", "response": "", "tokens_out": 0}])
|
| 105 |
|
| 106 |
+
# Build formatted prompts per model
|
| 107 |
formatted = [_format_prompt(tok, system_prompt, p) for p in prompts]
|
| 108 |
+
|
| 109 |
+
enc = tok(
|
| 110 |
formatted,
|
| 111 |
return_tensors="pt",
|
| 112 |
padding=True,
|
| 113 |
truncation=True,
|
| 114 |
).to(device)
|
| 115 |
|
| 116 |
+
# True prompt lengths per row (use attention mask sum to ignore padding)
|
| 117 |
+
prompt_lens = enc["attention_mask"].sum(dim=1)
|
| 118 |
+
|
| 119 |
with torch.no_grad():
|
| 120 |
+
gen = model.generate(
|
| 121 |
+
**enc,
|
| 122 |
+
max_new_tokens=int(max_new_tokens),
|
| 123 |
do_sample=(temperature > 0.0),
|
| 124 |
+
temperature=float(temperature) if temperature > 0 else None,
|
| 125 |
+
top_p=float(top_p),
|
| 126 |
+
top_k=int(top_k) if int(top_k) > 0 else None,
|
| 127 |
+
repetition_penalty=float(repetition_penalty),
|
| 128 |
eos_token_id=tok.eos_token_id,
|
| 129 |
+
pad_token_id=tok.pad_token_id,
|
| 130 |
)
|
| 131 |
|
| 132 |
+
# Slice generated tokens per row using actual prompt length
|
| 133 |
+
responses = []
|
| 134 |
+
tokens_out = []
|
| 135 |
+
for i in range(gen.size(0)):
|
| 136 |
+
start = int(prompt_lens[i].item())
|
| 137 |
+
gen_ids = gen[i, start:]
|
| 138 |
+
text = tok.decode(gen_ids, skip_special_tokens=True).strip()
|
| 139 |
+
responses.append(text)
|
| 140 |
+
tokens_out.append(len(gen_ids))
|
|
|
|
| 141 |
|
| 142 |
df = pd.DataFrame(
|
| 143 |
{
|
| 144 |
"user_prompt": prompts,
|
| 145 |
+
"response": responses,
|
| 146 |
+
"tokens_out": tokens_out,
|
| 147 |
}
|
| 148 |
)
|
| 149 |
return df
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
# ----------------------------
|
| 153 |
+
# Gradio UI
|
| 154 |
+
# ----------------------------
|
| 155 |
|
| 156 |
with gr.Blocks(title="Multi-Prompt Chat (System Prompt Control)") as demo:
|
| 157 |
gr.Markdown(
|
| 158 |
"""
|
| 159 |
+
# 🧪 Multi-Prompt Chat for HF Space
|
| 160 |
+
Pick a small free model, set a **system prompt**, and enter **multiple user prompts** (one per line).
|
| 161 |
+
Click **Generate** to get batched responses, then **Download CSV** for offline use.
|
| 162 |
"""
|
| 163 |
)
|
| 164 |
|
|
|
|
| 177 |
)
|
| 178 |
prompts_multiline = gr.Textbox(
|
| 179 |
label="User prompts (one per line)",
|
| 180 |
+
placeholder="One query per line.\nExample:\nExplain transformers in simple terms\nGive 3 eco-friendly tips for students\nSummarise the benefits of multilingual models",
|
| 181 |
lines=10,
|
| 182 |
)
|
| 183 |
|
|
|
|
| 185 |
max_new_tokens = gr.Slider(16, 1024, value=256, step=1, label="max_new_tokens")
|
| 186 |
temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="temperature")
|
| 187 |
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="top_p")
|
| 188 |
+
top_k = gr.Slider(0, 200, value=40, step=1, label="top_k (0 disables)")
|
| 189 |
repetition_penalty = gr.Slider(1.0, 2.0, value=1.1, step=0.01, label="repetition_penalty")
|
| 190 |
|
| 191 |
run_btn = gr.Button("Generate", variant="primary")
|
|
|
|
| 192 |
|
| 193 |
with gr.Column(scale=1):
|
| 194 |
+
# Keep last results for stable downloads
|
| 195 |
+
state_df = gr.State(value=None)
|
| 196 |
+
|
| 197 |
out_df = gr.Dataframe(
|
| 198 |
headers=["user_prompt", "response", "tokens_out"],
|
| 199 |
datatype=["str", "str", "number"],
|
|
|
|
| 201 |
wrap=True,
|
| 202 |
interactive=False,
|
| 203 |
row_count=(0, "dynamic"),
|
| 204 |
+
type="pandas", # ensure callbacks get a pandas DataFrame
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
download_btn = gr.DownloadButton(
|
| 208 |
+
label="Download CSV",
|
| 209 |
+
value=None, # we update this with bytes on demand
|
| 210 |
+
file_name="batch.csv",
|
| 211 |
)
|
|
|
|
| 212 |
|
| 213 |
+
# -------- Callbacks --------
|
| 214 |
+
|
| 215 |
+
def _generate_cb(model_id, system_prompt, prompts_multiline, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
|
| 216 |
df = generate_batch(
|
| 217 |
model_id=model_id,
|
| 218 |
system_prompt=system_prompt,
|
|
|
|
| 223 |
top_k=int(top_k),
|
| 224 |
repetition_penalty=float(repetition_penalty),
|
| 225 |
)
|
| 226 |
+
return df, df # show in table, also store in state
|
| 227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
run_btn.click(
|
| 229 |
+
_generate_cb,
|
| 230 |
inputs=[model_id, system_prompt, prompts_multiline, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 231 |
+
outputs=[out_df, state_df],
|
| 232 |
api_name="generate_batch",
|
| 233 |
)
|
| 234 |
|
| 235 |
+
def _prepare_csv_cb(df_state):
|
| 236 |
+
if df_state is None or len(df_state) == 0:
|
| 237 |
+
df_state = pd.DataFrame([{"user_prompt": "", "response": "", "tokens_out": 0}])
|
| 238 |
+
csv_bytes = df_to_csv_bytes(df_state)
|
| 239 |
+
ts = datetime.utcnow().strftime("%Y%m%d-%H%M%S")
|
| 240 |
+
return gr.DownloadButton.update(value=csv_bytes, file_name=f"batch_{ts}.csv")
|
| 241 |
+
|
| 242 |
+
download_btn.click(_prepare_csv_cb, inputs=[state_df], outputs=[download_btn], api_name="download_csv")
|
| 243 |
|
| 244 |
if __name__ == "__main__":
|
| 245 |
demo.launch()
|