Spaces:
Runtime error
Runtime error
rm lazy-loading : preloaded at startup
Browse files
app.py
CHANGED
|
@@ -1,15 +1,13 @@
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
-
from PIL import Image
|
| 5 |
from transformers import AutoProcessor, Kosmos2_5ForConditionalGeneration
|
| 6 |
import re
|
| 7 |
|
| 8 |
-
# Check if CUDA is available
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 11 |
|
| 12 |
-
# Check if Flash Attention 2 is available
|
| 13 |
def is_flash_attention_available():
|
| 14 |
try:
|
| 15 |
import flash_attn
|
|
@@ -17,63 +15,33 @@ def is_flash_attention_available():
|
|
| 17 |
except ImportError:
|
| 18 |
return False
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
if is_flash_attention_available():
|
| 37 |
-
model_kwargs["attn_implementation"] = "flash_attention_2"
|
| 38 |
-
|
| 39 |
-
base_model = Kosmos2_5ForConditionalGeneration.from_pretrained(
|
| 40 |
-
base_repo,
|
| 41 |
-
**model_kwargs
|
| 42 |
-
)
|
| 43 |
-
base_processor = AutoProcessor.from_pretrained(base_repo)
|
| 44 |
-
return base_model, base_processor
|
| 45 |
-
|
| 46 |
-
def load_chat_model():
|
| 47 |
-
global chat_model, chat_processor
|
| 48 |
-
if chat_model is None:
|
| 49 |
-
chat_repo = "microsoft/kosmos-2.5-chat"
|
| 50 |
-
|
| 51 |
-
# Use Flash Attention 2 if available, otherwise use default attention
|
| 52 |
-
model_kwargs = {
|
| 53 |
-
"device_map": "cuda",
|
| 54 |
-
"dtype": dtype,
|
| 55 |
-
}
|
| 56 |
-
if is_flash_attention_available():
|
| 57 |
-
model_kwargs["attn_implementation"] = "flash_attention_2"
|
| 58 |
-
|
| 59 |
-
chat_model = Kosmos2_5ForConditionalGeneration.from_pretrained(
|
| 60 |
-
chat_repo,
|
| 61 |
-
**model_kwargs
|
| 62 |
-
)
|
| 63 |
-
chat_processor = AutoProcessor.from_pretrained(chat_repo)
|
| 64 |
-
return chat_model, chat_processor
|
| 65 |
|
| 66 |
def post_process_ocr(y, scale_height, scale_width, prompt="<ocr>"):
|
| 67 |
y = y.replace(prompt, "")
|
| 68 |
if "<md>" in prompt:
|
| 69 |
return y
|
| 70 |
-
|
| 71 |
pattern = r"<bbox><x_\d+><y_\d+><x_\d+><y_\d+></bbox>"
|
| 72 |
bboxs_raw = re.findall(pattern, y)
|
| 73 |
lines = re.split(pattern, y)[1:]
|
| 74 |
bboxs = [re.findall(r"\d+", i) for i in bboxs_raw]
|
| 75 |
bboxs = [[int(j) for j in i] for i in bboxs]
|
| 76 |
-
|
| 77 |
info = ""
|
| 78 |
for i in range(len(lines)):
|
| 79 |
if i < len(bboxs):
|
|
@@ -91,65 +59,58 @@ def post_process_ocr(y, scale_height, scale_width, prompt="<ocr>"):
|
|
| 91 |
def generate_markdown(image):
|
| 92 |
if image is None:
|
| 93 |
return "Please upload an image."
|
| 94 |
-
|
| 95 |
-
model, processor = load_base_model()
|
| 96 |
-
|
| 97 |
prompt = "<md>"
|
| 98 |
-
inputs =
|
| 99 |
-
|
| 100 |
height, width = inputs.pop("height"), inputs.pop("width")
|
| 101 |
raw_width, raw_height = image.size
|
| 102 |
scale_height = raw_height / height
|
| 103 |
scale_width = raw_width / width
|
| 104 |
-
|
| 105 |
inputs = {k: v.to("cuda") if v is not None else None for k, v in inputs.items()}
|
| 106 |
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
|
| 107 |
-
|
| 108 |
with torch.no_grad():
|
| 109 |
-
generated_ids =
|
| 110 |
**inputs,
|
| 111 |
max_new_tokens=1024,
|
| 112 |
)
|
| 113 |
-
|
| 114 |
-
generated_text =
|
| 115 |
result = generated_text[0].replace(prompt, "").strip()
|
| 116 |
-
|
| 117 |
return result
|
| 118 |
|
| 119 |
@spaces.GPU(duration=120)
|
| 120 |
def generate_ocr(image):
|
| 121 |
if image is None:
|
| 122 |
return "Please upload an image.", None
|
| 123 |
-
|
| 124 |
-
model, processor = load_base_model()
|
| 125 |
-
|
| 126 |
prompt = "<ocr>"
|
| 127 |
-
inputs =
|
| 128 |
-
|
| 129 |
height, width = inputs.pop("height"), inputs.pop("width")
|
| 130 |
raw_width, raw_height = image.size
|
| 131 |
scale_height = raw_height / height
|
| 132 |
scale_width = raw_width / width
|
| 133 |
-
|
| 134 |
inputs = {k: v.to("cuda") if v is not None else None for k, v in inputs.items()}
|
| 135 |
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
|
| 136 |
-
|
| 137 |
with torch.no_grad():
|
| 138 |
-
generated_ids =
|
| 139 |
**inputs,
|
| 140 |
max_new_tokens=1024,
|
| 141 |
)
|
| 142 |
-
|
| 143 |
-
generated_text =
|
| 144 |
-
|
| 145 |
-
# Post-process OCR output
|
| 146 |
output_text = post_process_ocr(generated_text[0], scale_height, scale_width)
|
| 147 |
-
|
| 148 |
-
# Create visualization
|
| 149 |
-
from PIL import ImageDraw
|
| 150 |
vis_image = image.copy()
|
| 151 |
draw = ImageDraw.Draw(vis_image)
|
| 152 |
-
|
| 153 |
lines = output_text.split("\n")
|
| 154 |
for line in lines:
|
| 155 |
if not line.strip():
|
|
@@ -161,7 +122,7 @@ def generate_ocr(image):
|
|
| 161 |
draw.polygon(coords, outline="red", width=2)
|
| 162 |
except:
|
| 163 |
continue
|
| 164 |
-
|
| 165 |
return output_text, vis_image
|
| 166 |
|
| 167 |
@spaces.GPU(duration=120)
|
|
@@ -170,54 +131,49 @@ def generate_chat_response(image, question):
|
|
| 170 |
return "Please upload an image."
|
| 171 |
if not question.strip():
|
| 172 |
return "Please ask a question."
|
| 173 |
-
|
| 174 |
-
model, processor = load_chat_model()
|
| 175 |
-
|
| 176 |
template = "<md>A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {} ASSISTANT:"
|
| 177 |
prompt = template.format(question)
|
| 178 |
-
|
| 179 |
-
inputs =
|
| 180 |
-
|
| 181 |
height, width = inputs.pop("height"), inputs.pop("width")
|
| 182 |
raw_width, raw_height = image.size
|
| 183 |
scale_height = raw_height / height
|
| 184 |
scale_width = raw_width / width
|
| 185 |
-
|
| 186 |
inputs = {k: v.to("cuda") if v is not None else None for k, v in inputs.items()}
|
| 187 |
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
|
| 188 |
-
|
| 189 |
with torch.no_grad():
|
| 190 |
-
generated_ids =
|
| 191 |
**inputs,
|
| 192 |
max_new_tokens=1024,
|
| 193 |
)
|
| 194 |
-
|
| 195 |
-
generated_text =
|
| 196 |
-
|
| 197 |
-
# Extract only the assistant's response
|
| 198 |
result = generated_text[0]
|
| 199 |
if "ASSISTANT:" in result:
|
| 200 |
result = result.split("ASSISTANT:")[-1].strip()
|
| 201 |
-
|
| 202 |
return result
|
| 203 |
|
| 204 |
-
# Create Gradio interface
|
| 205 |
with gr.Blocks(title="KOSMOS-2.5 Document AI Demo", theme=gr.themes.Soft()) as demo:
|
| 206 |
gr.Markdown("""
|
| 207 |
# KOSMOS-2.5 Document AI Demo
|
| 208 |
-
|
| 209 |
Explore Microsoft's KOSMOS-2.5, a multimodal model for reading text-intensive images!
|
| 210 |
This demo showcases three capabilities:
|
| 211 |
-
|
| 212 |
1. **Markdown Generation**: Convert document images to markdown format
|
| 213 |
2. **OCR with Bounding Boxes**: Extract text with spatial coordinates
|
| 214 |
3. **Document Q&A**: Ask questions about document content using KOSMOS-2.5 Chat
|
| 215 |
-
|
| 216 |
Upload a document image (receipt, form, article, etc.) and try different tasks!
|
| 217 |
""")
|
| 218 |
-
|
| 219 |
with gr.Tabs():
|
| 220 |
-
# Markdown Generation Tab
|
| 221 |
with gr.TabItem("π Markdown Generation"):
|
| 222 |
with gr.Row():
|
| 223 |
with gr.Column():
|
|
@@ -229,13 +185,12 @@ with gr.Blocks(title="KOSMOS-2.5 Document AI Demo", theme=gr.themes.Soft()) as d
|
|
| 229 |
md_button = gr.Button("Generate Markdown", variant="primary")
|
| 230 |
with gr.Column():
|
| 231 |
md_output = gr.Textbox(
|
| 232 |
-
label="Generated Markdown",
|
| 233 |
-
lines=15,
|
| 234 |
max_lines=20,
|
| 235 |
show_copy_button=True
|
| 236 |
)
|
| 237 |
-
|
| 238 |
-
# OCR Tab
|
| 239 |
with gr.TabItem("π OCR with Bounding Boxes"):
|
| 240 |
with gr.Row():
|
| 241 |
with gr.Column():
|
|
@@ -248,13 +203,12 @@ with gr.Blocks(title="KOSMOS-2.5 Document AI Demo", theme=gr.themes.Soft()) as d
|
|
| 248 |
with gr.Column():
|
| 249 |
with gr.Row():
|
| 250 |
ocr_text = gr.Textbox(
|
| 251 |
-
label="Extracted Text with Coordinates",
|
| 252 |
lines=10,
|
| 253 |
show_copy_button=True
|
| 254 |
)
|
| 255 |
ocr_vis = gr.Image(label="Visualization (Red boxes show detected text)")
|
| 256 |
-
|
| 257 |
-
# Chat Tab
|
| 258 |
with gr.TabItem("π¬ Document Q&A (Chat)"):
|
| 259 |
with gr.Row():
|
| 260 |
with gr.Column():
|
|
@@ -275,38 +229,22 @@ with gr.Blocks(title="KOSMOS-2.5 Document AI Demo", theme=gr.themes.Soft()) as d
|
|
| 275 |
chat_button = gr.Button("Get Answer", variant="primary")
|
| 276 |
with gr.Column():
|
| 277 |
chat_output = gr.Textbox(
|
| 278 |
-
label="Answer",
|
| 279 |
lines=8,
|
| 280 |
show_copy_button=True
|
| 281 |
)
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
outputs=[md_output]
|
| 288 |
-
)
|
| 289 |
-
|
| 290 |
-
ocr_button.click(
|
| 291 |
-
fn=generate_ocr,
|
| 292 |
-
inputs=[ocr_image],
|
| 293 |
-
outputs=[ocr_text, ocr_vis]
|
| 294 |
-
)
|
| 295 |
-
|
| 296 |
-
chat_button.click(
|
| 297 |
-
fn=generate_chat_response,
|
| 298 |
-
inputs=[chat_image, chat_question],
|
| 299 |
-
outputs=[chat_output]
|
| 300 |
-
)
|
| 301 |
-
|
| 302 |
-
# Examples section
|
| 303 |
gr.Markdown("""
|
| 304 |
## Example Use Cases:
|
| 305 |
- **Receipts**: Extract itemized information or ask about totals
|
| 306 |
- **Forms**: Convert to structured format or answer specific questions
|
| 307 |
- **Articles**: Get markdown format or ask about content
|
| 308 |
- **Screenshots**: Extract text or get information about specific elements
|
| 309 |
-
|
| 310 |
## Note:
|
| 311 |
This is a generative model and may occasionally hallucinate. Results should be verified for accuracy.
|
| 312 |
""")
|
|
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
+
from PIL import Image, ImageDraw
|
| 5 |
from transformers import AutoProcessor, Kosmos2_5ForConditionalGeneration
|
| 6 |
import re
|
| 7 |
|
|
|
|
| 8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 10 |
|
|
|
|
| 11 |
def is_flash_attention_available():
|
| 12 |
try:
|
| 13 |
import flash_attn
|
|
|
|
| 15 |
except ImportError:
|
| 16 |
return False
|
| 17 |
|
| 18 |
+
# Load models once at startup
|
| 19 |
+
base_repo = "microsoft/kosmos-2.5"
|
| 20 |
+
chat_repo = "microsoft/kosmos-2.5-chat"
|
| 21 |
+
|
| 22 |
+
model_kwargs = {
|
| 23 |
+
"device_map": "cuda",
|
| 24 |
+
"dtype": dtype,
|
| 25 |
+
}
|
| 26 |
+
if is_flash_attention_available():
|
| 27 |
+
model_kwargs["attn_implementation"] = "flash_attention_2"
|
| 28 |
+
|
| 29 |
+
base_model = Kosmos2_5ForConditionalGeneration.from_pretrained(base_repo, **model_kwargs)
|
| 30 |
+
base_processor = AutoProcessor.from_pretrained(base_repo)
|
| 31 |
+
|
| 32 |
+
chat_model = Kosmos2_5ForConditionalGeneration.from_pretrained(chat_repo, **model_kwargs)
|
| 33 |
+
chat_processor = AutoProcessor.from_pretrained(chat_repo)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
def post_process_ocr(y, scale_height, scale_width, prompt="<ocr>"):
|
| 36 |
y = y.replace(prompt, "")
|
| 37 |
if "<md>" in prompt:
|
| 38 |
return y
|
|
|
|
| 39 |
pattern = r"<bbox><x_\d+><y_\d+><x_\d+><y_\d+></bbox>"
|
| 40 |
bboxs_raw = re.findall(pattern, y)
|
| 41 |
lines = re.split(pattern, y)[1:]
|
| 42 |
bboxs = [re.findall(r"\d+", i) for i in bboxs_raw]
|
| 43 |
bboxs = [[int(j) for j in i] for i in bboxs]
|
| 44 |
+
|
| 45 |
info = ""
|
| 46 |
for i in range(len(lines)):
|
| 47 |
if i < len(bboxs):
|
|
|
|
| 59 |
def generate_markdown(image):
|
| 60 |
if image is None:
|
| 61 |
return "Please upload an image."
|
| 62 |
+
|
|
|
|
|
|
|
| 63 |
prompt = "<md>"
|
| 64 |
+
inputs = base_processor(text=prompt, images=image, return_tensors="pt")
|
| 65 |
+
|
| 66 |
height, width = inputs.pop("height"), inputs.pop("width")
|
| 67 |
raw_width, raw_height = image.size
|
| 68 |
scale_height = raw_height / height
|
| 69 |
scale_width = raw_width / width
|
| 70 |
+
|
| 71 |
inputs = {k: v.to("cuda") if v is not None else None for k, v in inputs.items()}
|
| 72 |
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
|
| 73 |
+
|
| 74 |
with torch.no_grad():
|
| 75 |
+
generated_ids = base_model.generate(
|
| 76 |
**inputs,
|
| 77 |
max_new_tokens=1024,
|
| 78 |
)
|
| 79 |
+
|
| 80 |
+
generated_text = base_processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 81 |
result = generated_text[0].replace(prompt, "").strip()
|
| 82 |
+
|
| 83 |
return result
|
| 84 |
|
| 85 |
@spaces.GPU(duration=120)
|
| 86 |
def generate_ocr(image):
|
| 87 |
if image is None:
|
| 88 |
return "Please upload an image.", None
|
| 89 |
+
|
|
|
|
|
|
|
| 90 |
prompt = "<ocr>"
|
| 91 |
+
inputs = base_processor(text=prompt, images=image, return_tensors="pt")
|
| 92 |
+
|
| 93 |
height, width = inputs.pop("height"), inputs.pop("width")
|
| 94 |
raw_width, raw_height = image.size
|
| 95 |
scale_height = raw_height / height
|
| 96 |
scale_width = raw_width / width
|
| 97 |
+
|
| 98 |
inputs = {k: v.to("cuda") if v is not None else None for k, v in inputs.items()}
|
| 99 |
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
|
| 100 |
+
|
| 101 |
with torch.no_grad():
|
| 102 |
+
generated_ids = base_model.generate(
|
| 103 |
**inputs,
|
| 104 |
max_new_tokens=1024,
|
| 105 |
)
|
| 106 |
+
|
| 107 |
+
generated_text = base_processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 108 |
+
|
|
|
|
| 109 |
output_text = post_process_ocr(generated_text[0], scale_height, scale_width)
|
| 110 |
+
|
|
|
|
|
|
|
| 111 |
vis_image = image.copy()
|
| 112 |
draw = ImageDraw.Draw(vis_image)
|
| 113 |
+
|
| 114 |
lines = output_text.split("\n")
|
| 115 |
for line in lines:
|
| 116 |
if not line.strip():
|
|
|
|
| 122 |
draw.polygon(coords, outline="red", width=2)
|
| 123 |
except:
|
| 124 |
continue
|
| 125 |
+
|
| 126 |
return output_text, vis_image
|
| 127 |
|
| 128 |
@spaces.GPU(duration=120)
|
|
|
|
| 131 |
return "Please upload an image."
|
| 132 |
if not question.strip():
|
| 133 |
return "Please ask a question."
|
| 134 |
+
|
|
|
|
|
|
|
| 135 |
template = "<md>A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {} ASSISTANT:"
|
| 136 |
prompt = template.format(question)
|
| 137 |
+
|
| 138 |
+
inputs = chat_processor(text=prompt, images=image, return_tensors="pt")
|
| 139 |
+
|
| 140 |
height, width = inputs.pop("height"), inputs.pop("width")
|
| 141 |
raw_width, raw_height = image.size
|
| 142 |
scale_height = raw_height / height
|
| 143 |
scale_width = raw_width / width
|
| 144 |
+
|
| 145 |
inputs = {k: v.to("cuda") if v is not None else None for k, v in inputs.items()}
|
| 146 |
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
|
| 147 |
+
|
| 148 |
with torch.no_grad():
|
| 149 |
+
generated_ids = chat_model.generate(
|
| 150 |
**inputs,
|
| 151 |
max_new_tokens=1024,
|
| 152 |
)
|
| 153 |
+
|
| 154 |
+
generated_text = chat_processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 155 |
+
|
|
|
|
| 156 |
result = generated_text[0]
|
| 157 |
if "ASSISTANT:" in result:
|
| 158 |
result = result.split("ASSISTANT:")[-1].strip()
|
| 159 |
+
|
| 160 |
return result
|
| 161 |
|
|
|
|
| 162 |
with gr.Blocks(title="KOSMOS-2.5 Document AI Demo", theme=gr.themes.Soft()) as demo:
|
| 163 |
gr.Markdown("""
|
| 164 |
# KOSMOS-2.5 Document AI Demo
|
| 165 |
+
|
| 166 |
Explore Microsoft's KOSMOS-2.5, a multimodal model for reading text-intensive images!
|
| 167 |
This demo showcases three capabilities:
|
| 168 |
+
|
| 169 |
1. **Markdown Generation**: Convert document images to markdown format
|
| 170 |
2. **OCR with Bounding Boxes**: Extract text with spatial coordinates
|
| 171 |
3. **Document Q&A**: Ask questions about document content using KOSMOS-2.5 Chat
|
| 172 |
+
|
| 173 |
Upload a document image (receipt, form, article, etc.) and try different tasks!
|
| 174 |
""")
|
| 175 |
+
|
| 176 |
with gr.Tabs():
|
|
|
|
| 177 |
with gr.TabItem("π Markdown Generation"):
|
| 178 |
with gr.Row():
|
| 179 |
with gr.Column():
|
|
|
|
| 185 |
md_button = gr.Button("Generate Markdown", variant="primary")
|
| 186 |
with gr.Column():
|
| 187 |
md_output = gr.Textbox(
|
| 188 |
+
label="Generated Markdown",
|
| 189 |
+
lines=15,
|
| 190 |
max_lines=20,
|
| 191 |
show_copy_button=True
|
| 192 |
)
|
| 193 |
+
|
|
|
|
| 194 |
with gr.TabItem("π OCR with Bounding Boxes"):
|
| 195 |
with gr.Row():
|
| 196 |
with gr.Column():
|
|
|
|
| 203 |
with gr.Column():
|
| 204 |
with gr.Row():
|
| 205 |
ocr_text = gr.Textbox(
|
| 206 |
+
label="Extracted Text with Coordinates",
|
| 207 |
lines=10,
|
| 208 |
show_copy_button=True
|
| 209 |
)
|
| 210 |
ocr_vis = gr.Image(label="Visualization (Red boxes show detected text)")
|
| 211 |
+
|
|
|
|
| 212 |
with gr.TabItem("π¬ Document Q&A (Chat)"):
|
| 213 |
with gr.Row():
|
| 214 |
with gr.Column():
|
|
|
|
| 229 |
chat_button = gr.Button("Get Answer", variant="primary")
|
| 230 |
with gr.Column():
|
| 231 |
chat_output = gr.Textbox(
|
| 232 |
+
label="Answer",
|
| 233 |
lines=8,
|
| 234 |
show_copy_button=True
|
| 235 |
)
|
| 236 |
+
|
| 237 |
+
md_button.click(fn=generate_markdown, inputs=[md_image], outputs=[md_output])
|
| 238 |
+
ocr_button.click(fn=generate_ocr, inputs=[ocr_image], outputs=[ocr_text, ocr_vis])
|
| 239 |
+
chat_button.click(fn=generate_chat_response, inputs=[chat_image, chat_question], outputs=[chat_output])
|
| 240 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
gr.Markdown("""
|
| 242 |
## Example Use Cases:
|
| 243 |
- **Receipts**: Extract itemized information or ask about totals
|
| 244 |
- **Forms**: Convert to structured format or answer specific questions
|
| 245 |
- **Articles**: Get markdown format or ask about content
|
| 246 |
- **Screenshots**: Extract text or get information about specific elements
|
| 247 |
+
|
| 248 |
## Note:
|
| 249 |
This is a generative model and may occasionally hallucinate. Results should be verified for accuracy.
|
| 250 |
""")
|